|
import streamlit as st |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
from streamlit_webrtc import webrtc_streamer, VideoProcessorBase, WebRtcMode |
|
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("microsoft/DialoGPT-medium") |
|
model = GPT2LMHeadModel.from_pretrained("microsoft/DialoGPT-medium") |
|
|
|
|
|
st.title("AI Multimodal Chat & File Processing App") |
|
|
|
|
|
if "history" not in st.session_state: |
|
st.session_state.history = [] |
|
|
|
|
|
def chat_with_model(user_input): |
|
new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt") |
|
st.session_state.history.append(new_user_input_ids) |
|
|
|
bot_input_ids = new_user_input_ids |
|
for history in st.session_state.history: |
|
bot_input_ids = history if len(history) < 2048 else history[-1024:] |
|
|
|
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) |
|
bot_output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) |
|
return bot_output |
|
|
|
|
|
user_input = st.text_input("You: ", "") |
|
if user_input: |
|
response = chat_with_model(user_input) |
|
st.session_state.history.append(tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")) |
|
st.write(f"Bot: {response}") |
|
|
|
|
|
if st.session_state.history: |
|
for i in range(len(st.session_state.history) - 1, -1, -1): |
|
user_msg = tokenizer.decode(st.session_state.history[i], skip_special_tokens=True) |
|
st.write(f"You: {user_msg}") |
|
|
|
|
|
st.subheader("Video/Audio Stream") |
|
class VideoProcessor(VideoProcessorBase): |
|
def recv(self, frame): |
|
return frame |
|
|
|
webrtc_streamer(key="example", mode=WebRtcMode.SENDRECV, video_processor_factory=VideoProcessor) |
|
|