tensor-boy commited on
Commit
b47bf87
·
verified ·
1 Parent(s): 772630e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +92 -46
app.py CHANGED
@@ -4,31 +4,87 @@ import requests
4
  import inspect
5
  import pandas as pd
6
 
7
- # (Keep Constants as is)
 
 
 
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
  class BasicAgent:
14
  def __init__(self):
15
- print("BasicAgent initialized.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def __call__(self, question: str) -> str:
17
  print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
 
 
 
 
21
 
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
 
23
  """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
  """
27
  # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,13 +94,14 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
  agent = BasicAgent()
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
 
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
  print(agent_code)
50
 
@@ -55,21 +112,21 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
  except requests.exceptions.RequestException as e:
62
  print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
  except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
  print(f"An unexpected error occurred fetching questions: {e}")
70
  return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
  print(f"Running agent on {len(questions_data)} questions...")
@@ -84,19 +141,19 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
  print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
  print(status_update)
98
 
99
- # 5. Submit
100
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
  response = requests.post(submit_url, json=submission_data, timeout=60)
@@ -146,51 +203,40 @@ with gr.Blocks() as demo:
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
  ---
155
  **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
 
158
  """
159
  )
160
-
161
  gr.LoginButton()
162
-
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
  run_button.click(
170
  fn=run_and_submit_all,
171
  outputs=[status_output, results_table]
172
  )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
182
  print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
  else:
191
  print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
  print("Launching Gradio Interface for Basic Agent Evaluation...")
196
  demo.launch(debug=True, share=False)
 
4
  import inspect
5
  import pandas as pd
6
 
7
+ # Import the Google Gen AI modules
8
+ from google import genai
9
+ from google.genai import types
10
+
11
  # --- Constants ---
12
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
13
 
14
+ # --- Updated Agent Definition using Google Gen AI API ---
 
15
  class BasicAgent:
16
  def __init__(self):
17
+ print("BasicAgent (Google Gen AI) initialized.")
18
+
19
+ def generate_answer(self, question: str) -> str:
20
+ """
21
+ Generates a precise answer using the Google Gen AI API.
22
+ The system instruction mandates that the output contain only the final answer.
23
+ """
24
+ api_key = os.environ.get("GEMINI_API_KEY")
25
+ if not api_key:
26
+ raise ValueError("GEMINI_API_KEY environment variable not set. Please set it before running.")
27
+ client = genai.Client(api_key=api_key)
28
+ model = "gemini-2.0-flash"
29
+
30
+ # Define a strict system instruction. Ensure that the output is minimal:
31
+ system_instruction_text = (
32
+ "You are a general AI assistant. Answer the question with a precise, final answer only. "
33
+ "If asked for a number, reply with only that number (without commas or units unless explicitly required). "
34
+ "If asked for a string, reply with minimal text (do not include articles or abbreviations). "
35
+ "If the answer is a comma separated list, format accordingly with minimal punctuation. "
36
+ "Output the answer only, with no extra commentary or explanation."
37
+ )
38
+
39
+ # Build the conversation contents with the user query.
40
+ contents = [
41
+ types.Content(
42
+ role="user",
43
+ parts=[types.Part.from_text(text=question)]
44
+ )
45
+ ]
46
+
47
+ # Include the built-in Google Search tool so the model can fetch live data if needed.
48
+ tools = [types.Tool(google_search=types.GoogleSearch())]
49
+
50
+ # Prepare the configuration with the system instruction.
51
+ generate_config = types.GenerateContentConfig(
52
+ tools=tools,
53
+ response_mime_type="text/plain",
54
+ system_instruction=[types.Part.from_text(text=system_instruction_text)]
55
+ )
56
+
57
+ answer = ""
58
+ # Stream the response in chunks and aggregate the final answer.
59
+ for chunk in client.models.generate_content_stream(
60
+ model=model,
61
+ contents=contents,
62
+ config=generate_config
63
+ ):
64
+ answer += chunk.text
65
+
66
+ return answer.strip()
67
+
68
  def __call__(self, question: str) -> str:
69
  print(f"Agent received question (first 50 chars): {question[:50]}...")
70
+ try:
71
+ answer = self.generate_answer(question)
72
+ print(f"Agent returning answer: {answer}")
73
+ except Exception as e:
74
+ print(f"Error generating answer: {e}")
75
+ answer = f"AGENT ERROR: {e}"
76
+ return answer
77
 
78
+
79
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
80
  """
81
+ Fetches all evaluation questions, runs the BasicAgent on them,
82
+ submits all answers to the scoring API, and displays the results.
83
  """
84
  # --- Determine HF Space Runtime URL and Repo URL ---
85
+ space_id = os.getenv("SPACE_ID") # Used to send a link to your code repository
 
86
  if profile:
87
+ username = f"{profile.username}"
88
  print(f"User logged in: {username}")
89
  else:
90
  print("User not logged in.")
 
94
  questions_url = f"{api_url}/questions"
95
  submit_url = f"{api_url}/submit"
96
 
97
+ # 1. Instantiate your agent
98
  try:
99
  agent = BasicAgent()
100
  except Exception as e:
101
  print(f"Error instantiating agent: {e}")
102
  return f"Error initializing agent: {e}", None
103
+
104
+ # Link to your public code (your Hugging Face Space breadboard)
105
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
106
  print(agent_code)
107
 
 
112
  response.raise_for_status()
113
  questions_data = response.json()
114
  if not questions_data:
115
+ print("Fetched questions list is empty.")
116
+ return "Fetched questions list is empty or invalid format.", None
117
  print(f"Fetched {len(questions_data)} questions.")
118
  except requests.exceptions.RequestException as e:
119
  print(f"Error fetching questions: {e}")
120
  return f"Error fetching questions: {e}", None
121
  except requests.exceptions.JSONDecodeError as e:
122
+ print(f"Error decoding JSON response from questions endpoint: {e}")
123
+ print(f"Response text: {response.text[:500]}")
124
+ return f"Error decoding server response for questions: {e}", None
125
  except Exception as e:
126
  print(f"An unexpected error occurred fetching questions: {e}")
127
  return f"An unexpected error occurred fetching questions: {e}", None
128
 
129
+ # 3. Run your Agent on each question
130
  results_log = []
131
  answers_payload = []
132
  print(f"Running agent on {len(questions_data)} questions...")
 
141
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
142
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
143
  except Exception as e:
144
+ print(f"Error running agent on task {task_id}: {e}")
145
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
146
 
147
  if not answers_payload:
148
  print("Agent did not produce any answers to submit.")
149
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
150
 
151
+ # 4. Prepare Submission data
152
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
153
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
154
  print(status_update)
155
 
156
+ # 5. Submit the answers for scoring
157
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
158
  try:
159
  response = requests.post(submit_url, json=submission_data, timeout=60)
 
203
  gr.Markdown(
204
  """
205
  **Instructions:**
206
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, and necessary packages.
207
+ 2. Log in to your Hugging Face account using the button below. Your HF username is used for submission.
208
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score.
 
 
209
  ---
210
  **Disclaimers:**
211
+ Once you click the submit button it may take some time as the agent processes all the questions.
212
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own robust solution.
213
+ For instance, you might cache the answers and submit in a separate action or process them asynchronously.
214
  """
215
  )
 
216
  gr.LoginButton()
 
217
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
218
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
219
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
 
220
  run_button.click(
221
  fn=run_and_submit_all,
222
  outputs=[status_output, results_table]
223
  )
224
 
225
  if __name__ == "__main__":
226
+ print("\n" + "-" * 30 + " App Starting " + "-" * 30)
 
227
  space_host_startup = os.getenv("SPACE_HOST")
228
+ space_id_startup = os.getenv("SPACE_ID")
 
229
  if space_host_startup:
230
  print(f"✅ SPACE_HOST found: {space_host_startup}")
231
  print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
232
  else:
233
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
234
+ if space_id_startup:
 
235
  print(f"✅ SPACE_ID found: {space_id_startup}")
236
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
237
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
238
  else:
239
  print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
240
+ print("-" * (60 + len(" App Starting ")) + "\n")
 
 
241
  print("Launching Gradio Interface for Basic Agent Evaluation...")
242
  demo.launch(debug=True, share=False)