File size: 5,978 Bytes
44198e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from typing import Dict, List, Any
import requests
from bs4 import BeautifulSoup
from duckduckgo_search import ddg
from transformers import pipeline
from langchain.embeddings import HuggingFaceEmbeddings
import time
import json
import os
from urllib.parse import urlparse

class ModelManager:
    """Manages different AI models for specific tasks"""
    
    def __init__(self):
        self.device = "cpu"
        self.models = {}
        self.load_models()
        
    def load_models(self):
        # Use smaller models for CPU deployment
        self.models['summarizer'] = pipeline(
            "summarization",
            model="facebook/bart-base",
            device=self.device
        )
        
        self.models['embeddings'] = HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-MiniLM-L6-v2",
            model_kwargs={"device": self.device}
        )

class ContentProcessor:
    """Processes and analyzes different types of content"""
    
    def __init__(self):
        self.model_manager = ModelManager()
    
    def process_content(self, content: str) -> Dict:
        """Process content and generate insights"""
        try:
            # Generate summary
            summary = self.model_manager.models['summarizer'](
                content[:1024],
                max_length=100,
                min_length=30,
                do_sample=False
            )[0]['summary_text']
            
            return {
                'summary': summary,
                'content_type': 'text',
                'explanation': summary
            }
        except Exception as e:
            print(f"Error processing content: {str(e)}")
            return {
                'summary': content[:200] + "...",
                'content_type': 'text',
                'explanation': "Unable to generate detailed analysis."
            }

class WebSearchEngine:
    """Main search engine class"""
    
    def __init__(self):
        self.processor = ContentProcessor()
        self.session = requests.Session()
        self.request_delay = 1.0
        self.last_request_time = 0
    
    def is_valid_url(self, url: str) -> bool:
        """Check if URL is valid for crawling"""
        try:
            parsed = urlparse(url)
            return bool(parsed.netloc and parsed.scheme in ['http', 'https'])
        except:
            return False
    
    def get_metadata(self, soup: BeautifulSoup) -> Dict:
        """Extract metadata from page"""
        title = soup.title.string if soup.title else ""
        description = ""
        if soup.find("meta", attrs={"name": "description"}):
            description = soup.find("meta", attrs={"name": "description"}).get("content", "")
        
        return {
            "title": title,
            "description": description
        }
    
    def process_url(self, url: str) -> Dict:
        """Process a single URL"""
        try:
            # Respect rate limiting
            current_time = time.time()
            if current_time - self.last_request_time < self.request_delay:
                time.sleep(self.request_delay - (current_time - self.last_request_time))
            
            response = self.session.get(url, timeout=10)
            self.last_request_time = time.time()
            
            if not response.ok:
                return None
            
            soup = BeautifulSoup(response.text, 'lxml')
            metadata = self.get_metadata(soup)
            
            # Extract main content
            content = ' '.join([p.get_text() for p in soup.find_all('p')])
            
            if not content:
                return None
            
            processed_content = self.processor.process_content(content)
            processed_content['metadata'] = metadata
            
            return {
                'url': url,
                'title': metadata['title'],
                'snippet': content[:200] + "...",
                'processed_content': processed_content
            }
            
        except Exception as e:
            print(f"Error processing {url}: {str(e)}")
            return None
    
    def search(self, query: str, max_results: int = 5) -> Dict:
        """Perform search and process results"""
        try:
            # Search using DuckDuckGo
            search_results = ddg(query, max_results=max_results)
            
            # Process results
            processed_results = []
            for result in search_results:
                if self.is_valid_url(result['link']):
                    processed = self.process_url(result['link'])
                    if processed:
                        processed_results.append(processed)
            
            # Generate insights
            all_content = ' '.join([r['processed_content']['summary'] for r in processed_results if r])
            insights = self.processor.process_content(all_content)['summary']
            
            # Generate follow-up questions
            follow_up_questions = [
                f"What are the key differences between {query} and related topics?",
                f"How has {query} evolved over time?",
                f"What are the practical applications of {query}?"
            ]
            
            return {
                'results': processed_results,
                'insights': insights,
                'follow_up_questions': follow_up_questions,
                'similar_queries': []
            }
            
        except Exception as e:
            print(f"Error during search: {str(e)}")
            return {
                'results': [],
                'insights': f"Error performing search: {str(e)}",
                'follow_up_questions': [],
                'similar_queries': []
            }

# Main search function
def search(query: str, max_results: int = 5) -> Dict:
    """Main search function"""
    engine = WebSearchEngine()
    return engine.search(query, max_results)