aiws / search_engine.py
fikird
Improve content processing with better extraction and formatting
2f58cc7
raw
history blame
13.7 kB
from typing import Dict, List, Any
import requests
from bs4 import BeautifulSoup
from transformers import pipeline
from langchain_community.embeddings import HuggingFaceEmbeddings
import time
import json
import os
from urllib.parse import urlparse, quote_plus
import logging
import random
logger = logging.getLogger(__name__)
class SearchResult:
def __init__(self, title: str, link: str, snippet: str):
self.title = title
self.link = link
self.snippet = snippet
class ModelManager:
"""Manages different AI models for specific tasks"""
def __init__(self):
self.device = "cpu"
self.models = {}
self.load_models()
def load_models(self):
# Use smaller models for CPU deployment
self.models['summarizer'] = pipeline(
"summarization",
model="facebook/bart-base",
device=self.device
)
self.models['embeddings'] = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": self.device}
)
class ContentProcessor:
"""Processes and analyzes different types of content"""
def __init__(self):
self.model_manager = ModelManager()
def clean_text(self, text: str) -> str:
"""Clean and normalize text content"""
# Remove extra whitespace
text = ' '.join(text.split())
# Remove common navigation elements
nav_elements = [
"Skip to content",
"Search",
"Menu",
"Navigation",
"Subscribe",
"Browse",
"Submit",
"More",
"About",
"Contact",
"Privacy Policy",
"Terms of Use"
]
for element in nav_elements:
text = text.replace(element, "")
return text.strip()
def extract_main_content(self, soup: BeautifulSoup) -> str:
"""Extract main content from HTML"""
# Remove navigation, headers, footers
for elem in soup.find_all(['nav', 'header', 'footer', 'script', 'style', 'meta', 'link']):
elem.decompose()
# Try to find main content container
main_content = None
content_tags = ['article', 'main', '[role="main"]', '.content', '#content', '.post', '.entry']
for tag in content_tags:
main_content = soup.select_one(tag)
if main_content:
break
if not main_content:
main_content = soup
# Extract text from paragraphs
paragraphs = main_content.find_all('p')
if paragraphs:
return ' '.join(p.get_text(strip=True) for p in paragraphs)
# Fallback to all text if no paragraphs found
return main_content.get_text(strip=True)
def process_content(self, content: str, html_content: str = None) -> Dict:
"""Process content and generate insights"""
try:
# Clean content
cleaned_content = self.clean_text(content)
# If HTML content is provided, try to extract main content
if html_content:
soup = BeautifulSoup(html_content, 'lxml')
main_content = self.extract_main_content(soup)
if main_content:
cleaned_content = self.clean_text(main_content)
# Generate summary in chunks if content is too long
chunks = [cleaned_content[i:i+1024] for i in range(0, len(cleaned_content), 1024)]
summaries = []
for chunk in chunks[:3]: # Process up to 3 chunks to avoid too long processing
try:
summary = self.model_manager.models['summarizer'](
chunk,
max_length=150,
min_length=50,
do_sample=False
)[0]['summary_text']
summaries.append(summary)
except Exception as e:
logger.warning(f"Error summarizing chunk: {str(e)}")
continue
# Combine summaries
final_summary = ' '.join(summaries)
# Extract key points using bullet points
key_points = self.model_manager.models['summarizer'](
cleaned_content[:1024],
max_length=100,
min_length=30,
num_beams=4,
do_sample=True
)[0]['summary_text']
return {
'summary': final_summary,
'key_points': key_points,
'content': cleaned_content
}
except Exception as e:
return {
'summary': f"Error processing content: {str(e)}",
'key_points': "",
'content': content
}
class WebSearchEngine:
"""Main search engine class"""
def __init__(self):
self.processor = ContentProcessor()
self.session = requests.Session()
self.request_delay = 2.0
self.last_request_time = 0
self.max_retries = 3
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'DNT': '1',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
}
def safe_get(self, url: str, max_retries: int = 3) -> requests.Response:
"""Make a GET request with retries and error handling"""
for i in range(max_retries):
try:
# Add delay between requests
current_time = time.time()
time_since_last = current_time - self.last_request_time
if time_since_last < self.request_delay:
time.sleep(self.request_delay - time_since_last + random.uniform(0.5, 1.5))
response = self.session.get(url, headers=self.headers, timeout=10)
self.last_request_time = time.time()
if response.status_code == 200:
return response
elif response.status_code == 429: # Rate limit
wait_time = (i + 1) * 5
time.sleep(wait_time)
continue
else:
response.raise_for_status()
except Exception as e:
if i == max_retries - 1:
raise
time.sleep((i + 1) * 2)
raise Exception(f"Failed to fetch URL after {max_retries} attempts")
def is_valid_url(self, url: str) -> bool:
"""Check if URL is valid for crawling"""
try:
parsed = urlparse(url)
return bool(parsed.netloc and parsed.scheme)
except:
return False
def get_metadata(self, soup: BeautifulSoup) -> Dict:
"""Extract metadata from page"""
title = soup.title.string if soup.title else "No title"
description = ""
if soup.find("meta", attrs={"name": "description"}):
description = soup.find("meta", attrs={"name": "description"}).get("content", "")
return {
'title': title,
'description': description
}
def process_url(self, url: str) -> Dict:
"""Process a single URL"""
if not self.is_valid_url(url):
return {'error': f"Invalid URL: {url}"}
try:
response = self.safe_get(url)
soup = BeautifulSoup(response.text, 'lxml')
# Get metadata
metadata = self.get_metadata(soup)
# Process content with both text and HTML
processed = self.processor.process_content(
soup.get_text(),
html_content=response.text
)
return {
'url': url,
'title': metadata['title'],
'description': metadata['description'],
'summary': processed['summary'],
'key_points': processed['key_points'],
'content': processed['content']
}
except Exception as e:
return {'error': f"Error processing {url}: {str(e)}"}
def format_results(self, results: List[Dict]) -> Dict:
"""Format search results in a user-friendly way"""
formatted_insights = []
formatted_results = []
for result in results:
if 'error' not in result:
# Format key points
if result.get('key_points'):
points = result['key_points'].split('. ')
formatted_points = [f"• {point.strip()}" for point in points if point.strip()]
formatted_insights.extend(formatted_points)
# Format detailed result
formatted_result = {
'title': result['title'],
'url': result['url'],
'summary': result['summary'],
}
formatted_results.append(formatted_result)
# Remove duplicates while preserving order
formatted_insights = list(dict.fromkeys(formatted_insights))
return {
'insights': '\n'.join(formatted_insights[:10]), # Top 10 insights
'results': formatted_results
}
def search_duckduckgo(self, query: str, max_results: int = 5) -> List[Dict]:
"""Search DuckDuckGo and parse HTML results"""
search_results = []
try:
# Encode query for URL
encoded_query = quote_plus(query)
# DuckDuckGo HTML search URL
search_url = f'https://html.duckduckgo.com/html/?q={encoded_query}'
# Get search results page
response = self.safe_get(search_url)
soup = BeautifulSoup(response.text, 'lxml')
# Find all result elements
results = soup.find_all('div', {'class': 'result'})
for result in results[:max_results]:
try:
# Extract link
link_elem = result.find('a', {'class': 'result__a'})
if not link_elem:
continue
link = link_elem.get('href', '')
if not link or not self.is_valid_url(link):
continue
# Extract title
title = link_elem.get_text(strip=True)
# Extract snippet
snippet_elem = result.find('a', {'class': 'result__snippet'})
snippet = snippet_elem.get_text(strip=True) if snippet_elem else ""
search_results.append({
'link': link,
'title': title,
'snippet': snippet
})
# Add delay between processing results
time.sleep(random.uniform(0.2, 0.5))
except Exception as e:
logger.warning(f"Error processing search result: {str(e)}")
continue
return search_results
except Exception as e:
logger.error(f"Error during DuckDuckGo search: {str(e)}")
return []
def search(self, query: str, max_results: int = 5) -> Dict:
"""Perform search and process results"""
try:
# Search using DuckDuckGo HTML
search_results = self.search_duckduckgo(query, max_results)
if not search_results:
return {'error': 'No results found'}
results = []
for result in search_results:
if 'link' in result:
processed = self.process_url(result['link'])
if 'error' not in processed:
results.append(processed)
time.sleep(random.uniform(0.5, 1.0))
if not results:
return {'error': 'Failed to process any search results'}
# Format results in a user-friendly way
formatted = self.format_results(results)
return {
'results': formatted['results'],
'insights': formatted['insights'],
'follow_up_questions': [
f"What are the recent breakthroughs in {query}?",
f"How does {query} impact various industries?",
f"What are the future prospects of {query}?"
]
}
except Exception as e:
return {'error': f"Search failed: {str(e)}"}
# Main search function
def search(query: str, max_results: int = 5) -> Dict:
"""Main search function"""
engine = WebSearchEngine()
return engine.search(query, max_results)