aiws / search_engine.py
fikird
Enhance content processing and improve result formatting
3f90511
raw
history blame
13 kB
from typing import Dict, List, Any
import requests
from bs4 import BeautifulSoup
from transformers import pipeline
from langchain_community.embeddings import HuggingFaceEmbeddings
import time
import json
import os
from urllib.parse import urlparse, quote_plus
import logging
import random
logger = logging.getLogger(__name__)
class SearchResult:
def __init__(self, title: str, link: str, snippet: str):
self.title = title
self.link = link
self.snippet = snippet
class ModelManager:
"""Manages different AI models for specific tasks"""
def __init__(self):
self.device = "cpu"
self.models = {}
self.load_models()
def load_models(self):
# Use smaller models for CPU deployment
self.models['summarizer'] = pipeline(
"summarization",
model="facebook/bart-base",
device=self.device
)
self.models['embeddings'] = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": self.device}
)
class ContentProcessor:
"""Processes and analyzes different types of content"""
def __init__(self):
self.model_manager = ModelManager()
def clean_text(self, text: str) -> str:
"""Clean and normalize text content"""
# Remove extra whitespace
text = ' '.join(text.split())
# Remove common navigation elements
nav_patterns = [
"skip to content",
"skip to navigation",
"search",
"menu",
"subscribe",
"sign in",
"log in",
"browse",
"submit",
]
for pattern in nav_patterns:
text = text.replace(pattern.lower(), "")
return text.strip()
def extract_main_content(self, soup: BeautifulSoup) -> str:
"""Extract main content from HTML"""
# Remove navigation, headers, footers
for elem in soup.find_all(['nav', 'header', 'footer', 'aside', 'script', 'style']):
elem.decompose()
# Try to find main content container
main_content = None
for tag in ['main', 'article', 'div[role="main"]', '.main-content', '#main-content']:
main_content = soup.select_one(tag)
if main_content:
break
if not main_content:
# Fallback to body content
main_content = soup.find('body')
if main_content:
text = main_content.get_text(separator=' ', strip=True)
else:
# Last resort: get all text
text = soup.get_text(separator=' ', strip=True)
return self.clean_text(text)
def extract_key_points(self, text: str, max_points: int = 5) -> List[str]:
"""Extract key points from text using AI"""
try:
# Split text into smaller chunks
chunk_size = 1024
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
all_points = []
for chunk in chunks[:3]: # Process first 3 chunks to keep it manageable
summary = self.model_manager.models['summarizer'](
chunk,
max_length=100,
min_length=30,
do_sample=False
)[0]['summary_text']
# Split summary into sentences
points = [s.strip() for s in summary.split('.') if s.strip()]
all_points.extend(points)
# Return top points
return all_points[:max_points]
except Exception as e:
logger.error(f"Error extracting key points: {str(e)}")
return []
def process_content(self, content: str, soup: BeautifulSoup = None) -> Dict:
"""Process content and generate insights"""
try:
# Extract main content if HTML is available
if soup:
content = self.extract_main_content(soup)
else:
content = self.clean_text(content)
# Extract key points
key_points = self.extract_key_points(content)
# Generate overall summary
summary = self.model_manager.models['summarizer'](
content[:1024],
max_length=150,
min_length=50,
do_sample=False
)[0]['summary_text']
return {
'summary': summary,
'key_points': key_points,
'content': content
}
except Exception as e:
return {
'summary': f"Error processing content: {str(e)}",
'key_points': [],
'content': content
}
class WebSearchEngine:
"""Main search engine class"""
def __init__(self):
self.processor = ContentProcessor()
self.session = requests.Session()
self.request_delay = 2.0
self.last_request_time = 0
self.max_retries = 3
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'DNT': '1',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
}
def safe_get(self, url: str, max_retries: int = 3) -> requests.Response:
"""Make a GET request with retries and error handling"""
for i in range(max_retries):
try:
# Add delay between requests
current_time = time.time()
time_since_last = current_time - self.last_request_time
if time_since_last < self.request_delay:
time.sleep(self.request_delay - time_since_last + random.uniform(0.5, 1.5))
response = self.session.get(url, headers=self.headers, timeout=10)
self.last_request_time = time.time()
if response.status_code == 200:
return response
elif response.status_code == 429: # Rate limit
wait_time = (i + 1) * 5
time.sleep(wait_time)
continue
else:
response.raise_for_status()
except Exception as e:
if i == max_retries - 1:
raise
time.sleep((i + 1) * 2)
raise Exception(f"Failed to fetch URL after {max_retries} attempts")
def is_valid_url(self, url: str) -> bool:
"""Check if URL is valid for crawling"""
try:
parsed = urlparse(url)
return bool(parsed.netloc and parsed.scheme)
except:
return False
def get_metadata(self, soup: BeautifulSoup) -> Dict:
"""Extract metadata from page"""
title = soup.title.string if soup.title else "No title"
description = ""
if soup.find("meta", attrs={"name": "description"}):
description = soup.find("meta", attrs={"name": "description"}).get("content", "")
return {
'title': title,
'description': description
}
def process_url(self, url: str) -> Dict:
"""Process a single URL"""
if not self.is_valid_url(url):
return {'error': f"Invalid URL: {url}"}
try:
response = self.safe_get(url)
soup = BeautifulSoup(response.text, 'lxml')
# Process content with HTML context
processed = self.processor.process_content("", soup)
# Get metadata
metadata = self.get_metadata(soup)
return {
'url': url,
'title': metadata['title'],
'description': metadata['description'],
'summary': processed['summary'],
'key_points': processed['key_points'],
'content': processed['content']
}
except Exception as e:
return {'error': f"Error processing {url}: {str(e)}"}
def search_duckduckgo(self, query: str, max_results: int = 5) -> List[Dict]:
"""Search DuckDuckGo and parse HTML results"""
search_results = []
try:
# Encode query for URL
encoded_query = quote_plus(query)
# DuckDuckGo HTML search URL
search_url = f'https://html.duckduckgo.com/html/?q={encoded_query}'
# Get search results page
response = self.safe_get(search_url)
soup = BeautifulSoup(response.text, 'lxml')
# Find all result elements
results = soup.find_all('div', {'class': 'result'})
for result in results[:max_results]:
try:
# Extract link
link_elem = result.find('a', {'class': 'result__a'})
if not link_elem:
continue
link = link_elem.get('href', '')
if not link or not self.is_valid_url(link):
continue
# Extract title
title = link_elem.get_text(strip=True)
# Extract snippet
snippet_elem = result.find('a', {'class': 'result__snippet'})
snippet = snippet_elem.get_text(strip=True) if snippet_elem else ""
search_results.append({
'link': link,
'title': title,
'snippet': snippet
})
# Add delay between processing results
time.sleep(random.uniform(0.2, 0.5))
except Exception as e:
logger.warning(f"Error processing search result: {str(e)}")
continue
return search_results
except Exception as e:
logger.error(f"Error during DuckDuckGo search: {str(e)}")
return []
def search(self, query: str, max_results: int = 5) -> Dict:
"""Perform search and process results"""
try:
# Search using DuckDuckGo HTML
search_results = self.search_duckduckgo(query, max_results)
if not search_results:
return {'error': 'No results found'}
results = []
all_key_points = []
for result in search_results:
if 'link' in result:
processed = self.process_url(result['link'])
if 'error' not in processed:
results.append(processed)
if 'key_points' in processed:
all_key_points.extend(processed['key_points'])
time.sleep(random.uniform(0.5, 1.0))
if not results:
return {'error': 'Failed to process any search results'}
# Combine all summaries and key points
all_summaries = [r['summary'] for r in results if 'summary' in r]
combined_summary = " ".join(all_summaries)
# Generate final insights
final_summary = self.processor.model_manager.models['summarizer'](
combined_summary[:1024],
max_length=200,
min_length=100,
do_sample=False
)[0]['summary_text']
return {
'results': results,
'insights': final_summary,
'key_points': list(set(all_key_points)), # Remove duplicates
'follow_up_questions': [
f"What are the key differences between {query} and related topics?",
f"Can you explain {query} in simple terms?",
f"What are the latest developments in {query}?"
]
}
except Exception as e:
return {'error': f"Search failed: {str(e)}"}
# Main search function
def search(query: str, max_results: int = 5) -> Dict:
"""Main search function"""
engine = WebSearchEngine()
return engine.search(query, max_results)