Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ripple
|
| 2 |
+
import streamlit as stl
|
| 3 |
+
from tqdm.auto import tqdm
|
| 4 |
+
|
| 5 |
+
# streamlit app
|
| 6 |
+
stl.set_page_config(
|
| 7 |
+
page_title="Ripple",
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
stl.title("ripple search")
|
| 11 |
+
stl.write(
|
| 12 |
+
"An app that uses text input to search for described images, using embeddings of selected image datasets. Uses contrastive learning models(CLIP) and the sentence transformers library"
|
| 13 |
+
)
|
| 14 |
+
stl.link_button(
|
| 15 |
+
label="link to github and full library code",
|
| 16 |
+
url="https://github.com/kelechi-c/ripple_net",
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
dataset = stl.selectbox(
|
| 20 |
+
"choose huggingface dataset(bgger datasets take more time to embed..)",
|
| 21 |
+
options=[
|
| 22 |
+
"huggan/wikiart(1k)",
|
| 23 |
+
"huggan/wikiart(11k)",
|
| 24 |
+
"zh-plus/tiny-imagenet(110k)",
|
| 25 |
+
"lambdalabs/naruto-blip-captions(1k)",
|
| 26 |
+
"detection-datasets/fashionpedia(45k)",
|
| 27 |
+
],
|
| 28 |
+
)
|
| 29 |
+
# initalized global variables
|
| 30 |
+
|
| 31 |
+
embedded_data = None
|
| 32 |
+
embedder = None
|
| 33 |
+
text_search = None
|
| 34 |
+
|
| 35 |
+
ret_images = []
|
| 36 |
+
scores = []
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
if dataset and stl.button("embed image dataset"):
|
| 40 |
+
with stl.spinner("Initializing and creating image embeddings from dataset"):
|
| 41 |
+
embedder = ripple.ImageEmbedder(
|
| 42 |
+
dataset, retrieval_type="text-image", dataset_type="huggingface"
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
embedded_data = embedder.create_embeddings(device="cpu")
|
| 46 |
+
stl.success("Sucessfully embedded and dcreated image index")
|
| 47 |
+
|
| 48 |
+
if embedded_data is not None:
|
| 49 |
+
text_search = ripple.TextSearch(embedded_data, embedder.embed_model)
|
| 50 |
+
stl.success("Initialized text search class")
|
| 51 |
+
|
| 52 |
+
search_term = stl.text_input("Text description/search for image")
|
| 53 |
+
|
| 54 |
+
if search_term:
|
| 55 |
+
with stl.spinner("retrieving images with description.."):
|
| 56 |
+
scores, ret_images = text_search.get_similar_images(
|
| 57 |
+
search_term, k_images=4)
|
| 58 |
+
stl.success(f"sucessfully retrieved {len(ret_images)}")
|
| 59 |
+
|
| 60 |
+
for count, score, image in tqdm(zip(range(len(ret_images)), scores, ret_images)):
|
| 61 |
+
stl.image(image["image"][count])
|
| 62 |
+
stl.write(score)
|