Spaces:
Paused
Paused
can select model for GPT-4
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
| 2 |
from langchain.chains import RetrievalQA
|
| 3 |
from langchain.embeddings import OpenAIEmbeddings
|
| 4 |
from langchain.llms import OpenAI
|
|
|
|
| 5 |
from langchain.vectorstores import Qdrant
|
| 6 |
from openai.error import InvalidRequestError
|
| 7 |
from qdrant_client import QdrantClient
|
|
@@ -9,13 +10,24 @@ from config import DB_CONFIG
|
|
| 9 |
|
| 10 |
|
| 11 |
PERSIST_DIR_NAME = "nvdajp-book"
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
-
def get_retrieval_qa(temperature: int, option: str) -> RetrievalQA:
|
| 15 |
embeddings = OpenAIEmbeddings()
|
| 16 |
db_url, db_api_key, db_collection_name = DB_CONFIG
|
| 17 |
client = QdrantClient(url=db_url, api_key=db_api_key)
|
| 18 |
db = Qdrant(client=client, collection_name=db_collection_name, embeddings=embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
if option is None or option == "All":
|
| 20 |
retriever = db.as_retriever()
|
| 21 |
else:
|
|
@@ -25,7 +37,13 @@ def get_retrieval_qa(temperature: int, option: str) -> RetrievalQA:
|
|
| 25 |
}
|
| 26 |
)
|
| 27 |
return RetrievalQA.from_chain_type(
|
| 28 |
-
llm=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
)
|
| 30 |
|
| 31 |
|
|
@@ -42,8 +60,8 @@ def get_related_url(metadata):
|
|
| 42 |
yield f'<p>URL: <a href="{url}">{url}</a> (category: {category})</p>'
|
| 43 |
|
| 44 |
|
| 45 |
-
def main(query: str, option: str, temperature: int):
|
| 46 |
-
qa = get_retrieval_qa(temperature, option)
|
| 47 |
try:
|
| 48 |
result = qa(query)
|
| 49 |
except InvalidRequestError as e:
|
|
@@ -59,6 +77,7 @@ nvdajp_book_qa = gr.Interface(
|
|
| 59 |
fn=main,
|
| 60 |
inputs=[
|
| 61 |
gr.Textbox(label="query"),
|
|
|
|
| 62 |
gr.Radio(["All", "ja-book", "ja-nvda-user-guide", "en-nvda-user-guide"], label="絞り込み", info="ドキュメント制限する?"),
|
| 63 |
gr.Slider(0, 2)
|
| 64 |
],
|
|
|
|
| 2 |
from langchain.chains import RetrievalQA
|
| 3 |
from langchain.embeddings import OpenAIEmbeddings
|
| 4 |
from langchain.llms import OpenAI
|
| 5 |
+
from langchain.chat_models import ChatOpenAI
|
| 6 |
from langchain.vectorstores import Qdrant
|
| 7 |
from openai.error import InvalidRequestError
|
| 8 |
from qdrant_client import QdrantClient
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
PERSIST_DIR_NAME = "nvdajp-book"
|
| 13 |
+
# MODEL_NAME = "text-davinci-003"
|
| 14 |
+
# MODEL_NAME = "gpt-3.5-turbo"
|
| 15 |
+
# MODEL_NAME = "gpt-4"
|
| 16 |
|
| 17 |
|
| 18 |
+
def get_retrieval_qa(model_name: str | None, temperature: int, option: str | None) -> RetrievalQA:
|
| 19 |
embeddings = OpenAIEmbeddings()
|
| 20 |
db_url, db_api_key, db_collection_name = DB_CONFIG
|
| 21 |
client = QdrantClient(url=db_url, api_key=db_api_key)
|
| 22 |
db = Qdrant(client=client, collection_name=db_collection_name, embeddings=embeddings)
|
| 23 |
+
if model_name is None:
|
| 24 |
+
model = "gpt-3.5-turbo"
|
| 25 |
+
elif model_name == "GPT-3.5":
|
| 26 |
+
model = "gpt-3.5-turbo"
|
| 27 |
+
elif model_name == "GPT-4":
|
| 28 |
+
model = "gpt-4"
|
| 29 |
+
else:
|
| 30 |
+
model = "gpt-3.5-turbo"
|
| 31 |
if option is None or option == "All":
|
| 32 |
retriever = db.as_retriever()
|
| 33 |
else:
|
|
|
|
| 37 |
}
|
| 38 |
)
|
| 39 |
return RetrievalQA.from_chain_type(
|
| 40 |
+
llm=ChatOpenAI(
|
| 41 |
+
model=model,
|
| 42 |
+
temperature=temperature
|
| 43 |
+
),
|
| 44 |
+
chain_type="stuff",
|
| 45 |
+
retriever=retriever,
|
| 46 |
+
return_source_documents=True,
|
| 47 |
)
|
| 48 |
|
| 49 |
|
|
|
|
| 60 |
yield f'<p>URL: <a href="{url}">{url}</a> (category: {category})</p>'
|
| 61 |
|
| 62 |
|
| 63 |
+
def main(query: str, model_name: str, option: str, temperature: int):
|
| 64 |
+
qa = get_retrieval_qa(model_name, temperature, option)
|
| 65 |
try:
|
| 66 |
result = qa(query)
|
| 67 |
except InvalidRequestError as e:
|
|
|
|
| 77 |
fn=main,
|
| 78 |
inputs=[
|
| 79 |
gr.Textbox(label="query"),
|
| 80 |
+
gr.Radio(["GPT-3.5", "GPT-4"], label="Model", info="選択なしで「3.5」を使用"),
|
| 81 |
gr.Radio(["All", "ja-book", "ja-nvda-user-guide", "en-nvda-user-guide"], label="絞り込み", info="ドキュメント制限する?"),
|
| 82 |
gr.Slider(0, 2)
|
| 83 |
],
|