from kokoro import KPipeline from IPython.display import display, Audio import soundfile as sf import torch from IPython.display import display, Audio, HTML import soundfile as sf import os from moviepy.editor import VideoFileClip, AudioFileClip, ImageClip from PIL import Image import tempfile import random import cv2 import math import os, requests, io, time, re, random from moviepy.editor import ( VideoFileClip, concatenate_videoclips, AudioFileClip, ImageClip, CompositeVideoClip, TextClip ) import moviepy.video.fx.all as vfx import moviepy.config as mpy_config from pydub import AudioSegment from pydub.generators import Sine from google.colab import files from PIL import Image, ImageDraw, ImageFont import numpy as np from bs4 import BeautifulSoup import base64 from urllib.parse import quote import pysrt from gtts import gTTS from gtts import gTTS from PIL import Image, ImageDraw, ImageFont import numpy as np from bs4 import BeautifulSoup from urllib.parse import quote import pysrt import soundfile as sf from kokoro import KPipeline import cv2 import gradio as gr import tempfile # Added for use in create_clip # Initialize Kokoro TTS pipeline pipeline = KPipeline(lang_code='a') # 'a' is from original code; adjust if needed # Set ImageMagick binary mpy_config.change_settings({"IMAGEMAGICK_BINARY": "/usr/bin/convert"}) # Global Configuration PEXELS_API_KEY = 'BhJqbcdm9Vi90KqzXKAhnEHGsuFNv4irXuOjWtT761U49lRzo03qBGna' OPENROUTER_API_KEY = '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' OPENROUTER_MODEL = "mistralai/mistral-small-3.1-24b-instruct:free" TEMP_FOLDER = "temp_video_processing" OUTPUT_VIDEO_FILENAME = "final_video.mp4" USER_AGENT = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" # Helper Functions def generate_script(user_input): headers = { 'Authorization': f'Bearer {OPENROUTER_API_KEY}', 'HTTP-Referer': 'https://your-domain.com', 'X-Title': 'AI Documentary Maker' } prompt = f"""Short Documentary Script GeneratorInstructions: If I say "use this," just output the script exactly as I gave it. If I only give topics, generate a script based on them. If I provide a full script, rewrite it without any changes. Make everything short simple and humarous funny and act as serious but humarous. And don't say anything off topic. Also alway say a funny statement to subscribe based on the video topic at the end. Use normal conversational text like a normal person talking and avoid AI phase make the statements humanize and normal conversational And always talk negative views don't really wants any positive statement and the full script will be one video about one topic so keep in mind Formatting Rules: Title in Square Brackets: Each section starts with a one-word title inside [ ] (max two words if necessary). This title will be used as a search term for Pexels footage. Casual & Funny Narration: Each section has 5-10 words of narration. Keep it natural, funny, and unpredictable (not robotic, poetic, or rhythmic). No Special Formatting: No bold, italics, or special characters. You are a assistant AI your task is to create script. You aren't a chatbot. So, don't write extra text Generalized Search Terms: If a term is too specific, make it more general for Pexels search. Scene-Specific Writing: Each section describes only what should be shown in the video. Output Only the Script, and also make it funny and humarous and helirous and also add to subscribe with a funny statement like subscribe now or ..... No extra text, just the script. Example Output: [North Korea] Top 5 unknown facts about North Korea. [Invisibility] North Korea’s internet speed is so fast… it doesn’t exist. [Leadership] Kim Jong-un once won an election with 100% votes… against himself. [Magic] North Korea discovered time travel. That’s why their news is always from the past. [Warning] Subscribe now, or Kim Jong-un will send you a free one-way ticket… to North Korea. [Freedom] North Korean citizens can do anything… as long as it's government-approved. Now here is the Topic/scrip: {user_input} """ data = { 'model': OPENROUTER_MODEL, 'messages': [{'role': 'user', 'content': prompt}], 'temperature': 0.4, 'max_tokens': 5000 } try: response = requests.post( 'https://openrouter.ai/api/v1/chat/completions', headers=headers, json=data, timeout=30 ) if response.status_code == 200: response_data = response.json() if 'choices' in response_data and len(response_data['choices']) > 0: return response_data['choices'][0]['message']['content'] return None except Exception: return None def parse_script(script_text): sections = {} current_title = None current_text = "" try: for line in script_text.splitlines(): line = line.strip() if line.startswith("[") and "]" in line: bracket_start = line.find("[") bracket_end = line.find("]", bracket_start) if bracket_start != -1 and bracket_end != -1: if current_title is not None: sections[current_title] = current_text.strip() current_title = line[bracket_start+1:bracket_end] current_text = line[bracket_end+1:].strip() elif current_title: current_text += line + " " if current_title: sections[current_title] = current_text.strip() elements = [] for title, narration in sections.items(): if not title or not narration: continue media_element = {"type": "media", "prompt": title, "effects": "fade-in"} words = narration.split() duration = max(3, len(words) * 0.5) tts_element = {"type": "tts", "text": narration, "voice": "en", "duration": duration} elements.append(media_element) elements.append(tts_element) return elements except Exception: return [] def search_pexels_videos(query, pexels_api_key): headers = {'Authorization': pexels_api_key} base_url = "https://api.pexels.com/videos/search" num_pages = 3 videos_per_page = 15 all_videos = [] for page in range(1, num_pages + 1): try: params = {"query": query, "per_page": videos_per_page, "page": page} response = requests.get(base_url, headers=headers, params=params, timeout=10) if response.status_code == 200: data = response.json() videos = data.get("videos", []) for video in videos: video_files = video.get("video_files", []) for file in video_files: if file.get("quality") == "hd": all_videos.append(file.get("link")) break except Exception: continue return random.choice(all_videos) if all_videos else None def search_pexels_images(query, pexels_api_key): headers = {'Authorization': pexels_api_key} url = "https://api.pexels.com/v1/search" params = {"query": query, "per_page": 5, "orientation": "landscape"} try: response = requests.get(url, headers=headers, params=params, timeout=10) if response.status_code == 200: data = response.json() photos = data.get("photos", []) if photos: photo = random.choice(photos[:min(5, len(photos))]) return photo.get("src", {}).get("original") return None except Exception: return None def search_google_images(query): try: search_url = f"https://www.google.com/search?q={quote(query)}&tbm=isch" headers = {"User-Agent": USER_AGENT} response = requests.get(search_url, headers=headers, timeout=10) soup = BeautifulSoup(response.text, "html.parser") img_tags = soup.find_all("img") image_urls = [img.get("src", "") for img in img_tags if img.get("src", "").startswith("http") and "gstatic" not in img.get("src", "")] return random.choice(image_urls[:5]) if image_urls else None except Exception: return None def download_image(image_url, filename): try: headers = {"User-Agent": USER_AGENT} response = requests.get(image_url, headers=headers, stream=True, timeout=15) response.raise_for_status() with open(filename, 'wb') as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) img = Image.open(filename) img.verify() img = Image.open(filename) if img.mode != 'RGB': img = img.convert('RGB') img.save(filename) return filename except Exception: if os.path.exists(filename): os.remove(filename) return None def download_video(video_url, filename): try: response = requests.get(video_url, stream=True, timeout=30) response.raise_for_status() with open(filename, 'wb') as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) return filename except Exception: if os.path.exists(filename): os.remove(filename) return None def generate_media(prompt, current_index=0, total_segments=1): safe_prompt = re.sub(r'[^\w\s-]', '', prompt).strip().replace(' ', '_') if "news" in prompt.lower(): image_file = os.path.join(TEMP_FOLDER, f"{safe_prompt}_news.jpg") image_url = search_google_images(prompt) if image_url and download_image(image_url, image_file): return {"path": image_file, "asset_type": "image"} if random.random() < 0.25: video_file = os.path.join(TEMP_FOLDER, f"{safe_prompt}_video.mp4") video_url = search_pexels_videos(prompt, PEXELS_API_KEY) if video_url and download_video(video_url, video_file): return {"path": video_file, "asset_type": "video"} image_file = os.path.join(TEMP_FOLDER, f"{safe_prompt}.jpg") image_url = search_pexels_images(prompt, PEXELS_API_KEY) if image_url and download_image(image_url, image_file): return {"path": image_file, "asset_type": "image"} fallback_terms = ["nature", "people", "landscape", "technology", "business"] for term in fallback_terms: fallback_file = os.path.join(TEMP_FOLDER, f"fallback_{term}.jpg") fallback_url = search_pexels_images(term, PEXELS_API_KEY) if fallback_url and download_image(fallback_url, fallback_file): return {"path": fallback_file, "asset_type": "image"} return None def generate_tts(text, voice): safe_text = re.sub(r'[^\w\s-]', '', text[:10]).strip().replace(' ', '') file_path = os.path.join(TEMP_FOLDER, f"tts{safe_text}.wav") if os.path.exists(file_path): return file_path try: kokoro_voice = 'af_heart' if voice == 'en' else voice generator = pipeline(text, voice=kokoro_voice, speed=0.9, split_pattern=r'\n+') audio_segments = [audio for _, _, audio in generator] full_audio = np.concatenate(audio_segments) if len(audio_segments) > 1 else audio_segments[0] sf.write(file_path, full_audio, 24000) return file_path except Exception: try: tts = gTTS(text=text, lang='en') mp3_path = os.path.join(TEMP_FOLDER, f"tts_{safe_text}.mp3") tts.save(mp3_path) audio = AudioSegment.from_mp3(mp3_path) audio.export(file_path, format="wav") os.remove(mp3_path) return file_path except Exception: num_samples = int(max(3, len(text.split()) * 0.5) * 24000) silence = np.zeros(num_samples, dtype=np.float32) sf.write(file_path, silence, 24000) return file_path def apply_kenburns_effect(clip, target_resolution, effect_type=None): target_w, target_h = target_resolution clip_aspect = clip.w / clip.h target_aspect = target_w / target_h if clip_aspect > target_aspect: new_height = target_h new_width = int(new_height * clip_aspect) else: new_width = target_w new_height = int(new_width / clip_aspect) clip = clip.resize(newsize=(new_width, new_height)) base_scale = 1.15 new_width = int(new_width * base_scale) new_height = int(new_height * base_scale) clip = clip.resize(newsize=(new_width, new_height)) max_offset_x = new_width - target_w max_offset_y = new_height - target_h available_effects = ["zoom-in", "zoom-out", "pan-left", "pan-right", "up-left"] effect_type = random.choice(available_effects) if not effect_type or effect_type == "random" else effect_type if effect_type == "zoom-in": start_zoom, end_zoom = 0.9, 1.1 start_center = end_center = (new_width / 2, new_height / 2) elif effect_type == "zoom-out": start_zoom, end_zoom = 1.1, 0.9 start_center = end_center = (new_width / 2, new_height / 2) elif effect_type == "pan-left": start_zoom = end_zoom = 1.0 start_center = (max_offset_x + target_w / 2, (max_offset_y // 2) + target_h / 2) end_center = (target_w / 2, (max_offset_y // 2) + target_h / 2) elif effect_type == "pan-right": start_zoom = end_zoom = 1.0 start_center = (target_w / 2, (max_offset_y // 2) + target_h / 2) end_center = (max_offset_x + target_w / 2, (max_offset_y // 2) + target_h / 2) elif effect_type == "up-left": start_zoom = end_zoom = 1.0 start_center = (max_offset_x + target_w / 2, max_offset_y + target_h / 2) end_center = (target_w / 2, target_h / 2) else: raise ValueError(f"Unsupported effect_type: {effect_type}") def transform_frame(get_frame, t): frame = get_frame(t) ratio = 0.5 - 0.5 * math.cos(math.pi * t / clip.duration) if clip.duration > 0 else 0 current_zoom = start_zoom + (end_zoom - start_zoom) * ratio crop_w, crop_h = int(target_w / current_zoom), int(target_h / current_zoom) current_center_x = start_center[0] + (end_center[0] - start_center[0]) * ratio current_center_y = start_center[1] + (end_center[1] - start_center[1]) * ratio min_center_x, max_center_x = crop_w / 2, new_width - crop_w / 2 min_center_y, max_center_y = crop_h / 2, new_height - crop_h / 2 current_center_x = max(min_center_x, min(current_center_x, max_center_x)) current_center_y = max(min_center_y, min(current_center_y, max_center_y)) cropped_frame = cv2.getRectSubPix(frame, (crop_w, crop_h), (current_center_x, current_center_y)) return cv2.resize(cropped_frame, (target_w, target_h), interpolation=cv2.INTER_LANCZOS4) return clip.fl(transform_frame) def resize_to_fill(clip, target_resolution): target_w, target_h = target_resolution clip_aspect = clip.w / clip.h target_aspect = target_w / target_h if clip_aspect > target_aspect: clip = clip.resize(height=target_h) crop_amount = (clip.w - target_w) / 2 clip = clip.crop(x1=crop_amount, x2=clip.w - crop_amount, y1=0, y2=clip.h) else: clip = clip.resize(width=target_w) crop_amount = (clip.h - target_h) / 2 clip = clip.crop(x1=0, x2=clip.w, y1=crop_amount, y2=clip.h - crop_amount) return clip def add_background_music(final_video, bg_music_volume=0.08): bg_music_path = "background_music.mp3" if os.path.exists(bg_music_path): bg_music = AudioFileClip(bg_music_path) if bg_music.duration < final_video.duration: loops_needed = math.ceil(final_video.duration / bg_music.duration) bg_segments = [bg_music] * loops_needed bg_music = concatenate_audioclips(bg_segments) bg_music = bg_music.subclip(0, final_video.duration) bg_music = bg_music.volumex(bg_music_volume) video_audio = final_video.audio mixed_audio = CompositeAudioClip([video_audio, bg_music]) final_video = final_video.set_audio(mixed_audio) return final_video def create_clip(media_path, asset_type, tts_path, duration=None, effects=None, narration_text=None, segment_index=0): try: if not os.path.exists(media_path) or not os.path.exists(tts_path): return None audio_clip = AudioFileClip(tts_path).audio_fadeout(0.2) target_duration = audio_clip.duration + 0.2 if asset_type == "video": clip = VideoFileClip(media_path) clip = resize_to_fill(clip, TARGET_RESOLUTION) clip = clip.loop(duration=target_duration) if clip.duration < target_duration else clip.subclip(0, target_duration) elif asset_type == "image": img = Image.open(media_path) if img.mode != 'RGB': with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp: img.convert('RGB').save(temp.name) media_path = temp.name img.close() clip = ImageClip(media_path).set_duration(target_duration) clip = apply_kenburns_effect(clip, TARGET_RESOLUTION) clip = clip.fadein(0.3).fadeout(0.3) else: return None subtitle_clips = [] if narration_text and CAPTION_COLOR != "transparent": words = narration_text.split() chunks = [' '.join(words[i:i+5]) for i in range(0, len(words), 5)] chunk_duration = audio_clip.duration / len(chunks) subtitle_y_position = int(TARGET_RESOLUTION[1] * 0.70) for i, chunk_text in enumerate(chunks): start_time = i * chunk_duration end_time = (i + 1) * chunk_duration txt_clip = TextClip( chunk_text, fontsize=45, font='Arial-Bold', color=CAPTION_COLOR, bg_color='rgba(0, 0, 0, 0.25)', method='caption', align='center', stroke_width=2, stroke_color=CAPTION_COLOR, size=(TARGET_RESOLUTION[0] * 0.8, None) ).set_start(start_time).set_end(end_time).set_position(('center', subtitle_y_position)) subtitle_clips.append(txt_clip) clip = CompositeVideoClip([clip] + subtitle_clips) clip = clip.set_audio(audio_clip) return clip except Exception: return None # Main Gradio Function def generate_video(video_concept, resolution, caption_option): global TARGET_RESOLUTION, CAPTION_COLOR TARGET_RESOLUTION = (1920, 1080) if resolution == "Full" else (1080, 1920) CAPTION_COLOR = "white" if caption_option == "Yes" else "transparent" if os.path.exists(TEMP_FOLDER): shutil.rmtree(TEMP_FOLDER) os.makedirs(TEMP_FOLDER) script = generate_script(video_concept) if not script: return "Failed to generate script." elements = parse_script(script) if not elements: return "Failed to parse script." paired_elements = [(elements[i], elements[i+1]) for i in range(0, len(elements), 2) if i+1 < len(elements)] if not paired_elements: return "No valid script segments found." clips = [] for idx, (media_elem, tts_elem) in enumerate(paired_elements): media_asset = generate_media(media_elem['prompt'], current_index=idx, total_segments=len(paired_elements)) if not media_asset: continue tts_path = generate_tts(tts_elem['text'], tts_elem['voice']) if not tts_path: continue clip = create_clip( media_path=media_asset['path'], asset_type=media_asset['asset_type'], tts_path=tts_path, duration=tts_elem['duration'], effects=media_elem.get('effects', 'fade-in'), narration_text=tts_elem['text'], segment_index=idx ) if clip: clips.append(clip) if not clips: return "No clips were successfully created." final_video = concatenate_videoclips(clips, method="compose") final_video = add_background_music(final_video, bg_music_volume=0.08) final_video.write_videofile(OUTPUT_VIDEO_FILENAME, codec='libx264', fps=24, preset='veryfast') shutil.rmtree(TEMP_FOLDER) return OUTPUT_VIDEO_FILENAME # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# AI Documentary Video Generator") with gr.Row(): video_concept = gr.Textbox(label="Video Concept", placeholder="Enter your video concept here...") resolution = gr.Dropdown(["Full", "Short"], label="Resolution", value="Full") caption_option = gr.Dropdown(["Yes", "No"], label="Caption", value="Yes") generate_btn = gr.Button("Generate Video") output_video = gr.Video(label="Generated Video") generate_btn.click(generate_video, inputs=[video_concept, resolution, caption_option], outputs=output_video) demo.launch()