Spaces:
Runtime error
Runtime error
various fixes
Browse files- README.md +3 -2
- audiodiffusion/__init__.py +128 -61
- config/ldm_autoencoder_kl.yaml +2 -2
- scripts/train_unconditional.py +26 -29
- scripts/train_vae.py +0 -2
README.md
CHANGED
|
@@ -18,7 +18,7 @@ license: gpl-3.0
|
|
| 18 |
**UPDATES**:
|
| 19 |
|
| 20 |
15/10/2022
|
| 21 |
-
Added latent audio diffusion (see below).
|
| 22 |
|
| 23 |
4/10/2022
|
| 24 |
It is now possible to mask parts of the input audio during generation which means you can stitch several samples together (think "out-painting").
|
|
@@ -138,5 +138,6 @@ python scripts/train_vae.py \
|
|
| 138 |
#### Train latent diffusion model.
|
| 139 |
```bash
|
| 140 |
accelerate launch ...
|
| 141 |
-
--vae models/autoencoder-kl
|
|
|
|
| 142 |
```
|
|
|
|
| 18 |
**UPDATES**:
|
| 19 |
|
| 20 |
15/10/2022
|
| 21 |
+
Added latent audio diffusion (see below). Also added the possibility to train a model to use DDIM ([Denoising Diffusion Implicit Models](https://arxiv.org/pdf/2010.02502.pdf)) by setting `--scheduler ddim`. These have the benefit that samples can be generated with much fewer steps (~50) than used in training.
|
| 22 |
|
| 23 |
4/10/2022
|
| 24 |
It is now possible to mask parts of the input audio during generation which means you can stitch several samples together (think "out-painting").
|
|
|
|
| 138 |
#### Train latent diffusion model.
|
| 139 |
```bash
|
| 140 |
accelerate launch ...
|
| 141 |
+
--vae models/autoencoder-kl
|
| 142 |
+
--latent_resoultion 32
|
| 143 |
```
|
audiodiffusion/__init__.py
CHANGED
|
@@ -1,15 +1,16 @@
|
|
| 1 |
-
from typing import Iterable, Tuple
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
from tqdm.auto import tqdm
|
| 7 |
from librosa.beat import beat_track
|
| 8 |
-
from diffusers import DiffusionPipeline
|
|
|
|
| 9 |
|
| 10 |
from .mel import Mel
|
| 11 |
|
| 12 |
-
VERSION = "1.
|
| 13 |
|
| 14 |
|
| 15 |
class AudioDiffusion:
|
|
@@ -42,7 +43,11 @@ class AudioDiffusion:
|
|
| 42 |
hop_length=hop_length,
|
| 43 |
top_db=top_db)
|
| 44 |
self.model_id = model_id
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
if cuda:
|
| 47 |
self.pipe.to("cuda")
|
| 48 |
self.progress_bar = progress_bar or (lambda _: _)
|
|
@@ -55,20 +60,18 @@ class AudioDiffusion:
|
|
| 55 |
"""Generate random mel spectrogram and convert to audio.
|
| 56 |
|
| 57 |
Args:
|
|
|
|
| 58 |
generator (torch.Generator): random number generator or None
|
| 59 |
|
| 60 |
Returns:
|
| 61 |
PIL Image: mel spectrogram
|
| 62 |
(float, np.ndarray): sample rate and raw audio
|
| 63 |
"""
|
| 64 |
-
images = self.pipe(
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
image = Image.fromarray(images[0][0])
|
| 70 |
-
audio = self.mel.image_to_audio(image)
|
| 71 |
-
return image, (self.mel.get_sample_rate(), audio)
|
| 72 |
|
| 73 |
@torch.no_grad()
|
| 74 |
def generate_spectrogram_and_audio_from_audio(
|
|
@@ -99,51 +102,124 @@ class AudioDiffusion:
|
|
| 99 |
(float, np.ndarray): sample rate and raw audio
|
| 100 |
"""
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
if steps is None:
|
| 105 |
-
steps = self.
|
| 106 |
# Unfortunately, the schedule is set up in the constructor
|
| 107 |
-
scheduler = self.
|
| 108 |
scheduler.set_timesteps(steps)
|
| 109 |
mask = None
|
| 110 |
images = noise = torch.randn(
|
| 111 |
-
(
|
| 112 |
-
self.
|
| 113 |
generator=generator)
|
| 114 |
|
| 115 |
if audio_file is not None or raw_audio is not None:
|
| 116 |
-
|
| 117 |
-
input_image =
|
| 118 |
input_image = np.frombuffer(input_image.tobytes(),
|
| 119 |
dtype="uint8").reshape(
|
| 120 |
(input_image.height,
|
| 121 |
input_image.width))
|
| 122 |
input_image = ((input_image / 255) * 2 - 1)
|
|
|
|
| 123 |
|
| 124 |
-
if hasattr(self
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
|
| 129 |
if start_step > 0:
|
| 130 |
images[0, 0] = scheduler.add_noise(
|
| 131 |
-
torch.tensor(
|
| 132 |
noise, torch.tensor(steps - start_step))
|
| 133 |
|
| 134 |
-
pixels_per_second = (
|
| 135 |
-
self.
|
| 136 |
-
|
| 137 |
mask_start = int(mask_start_secs * pixels_per_second)
|
| 138 |
mask_end = int(mask_end_secs * pixels_per_second)
|
| 139 |
mask = scheduler.add_noise(
|
| 140 |
-
torch.tensor(
|
| 141 |
torch.tensor(scheduler.timesteps[start_step:]))
|
| 142 |
|
| 143 |
-
images = images.to(self.
|
| 144 |
for step, t in enumerate(
|
| 145 |
self.progress_bar(scheduler.timesteps[start_step:])):
|
| 146 |
-
model_output = self.
|
| 147 |
images = scheduler.step(model_output,
|
| 148 |
t,
|
| 149 |
images,
|
|
@@ -151,45 +227,36 @@ class AudioDiffusion:
|
|
| 151 |
|
| 152 |
if mask is not None:
|
| 153 |
if mask_start > 0:
|
| 154 |
-
images[
|
| 155 |
-
|
| 156 |
if mask_end > 0:
|
| 157 |
-
images[
|
|
|
|
| 158 |
|
| 159 |
-
if hasattr(self
|
| 160 |
# 0.18215 was scaling factor used in training to ensure unit variance
|
| 161 |
-
# This is also currently hardcoded in diffusers pipeline
|
| 162 |
images = 1 / 0.18215 * images
|
| 163 |
-
images = self.
|
| 164 |
|
| 165 |
images = (images / 2 + 0.5).clamp(0, 1)
|
| 166 |
images = images.cpu().permute(0, 2, 3, 1).numpy()
|
| 167 |
-
images = (images * 255).round().astype("uint8")
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
image = image.convert('L')
|
| 173 |
|
| 174 |
-
audio = self.mel.image_to_audio(image)
|
| 175 |
-
return image, (self.mel.get_sample_rate(), audio)
|
| 176 |
|
| 177 |
-
|
| 178 |
-
def loop_it(audio: np.ndarray,
|
| 179 |
-
sample_rate: int,
|
| 180 |
-
loops: int = 12) -> np.ndarray:
|
| 181 |
-
"""Loop audio
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
"""
|
| 191 |
-
_, beats = beat_track(y=audio, sr=sample_rate, units='samples')
|
| 192 |
-
for beats_in_bar in [16, 12, 8, 4]:
|
| 193 |
-
if len(beats) > beats_in_bar:
|
| 194 |
-
return np.tile(audio[beats[0]:beats[beats_in_bar]], loops)
|
| 195 |
-
return None
|
|
|
|
| 1 |
+
from typing import Iterable, Tuple, Union, List
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
from tqdm.auto import tqdm
|
| 7 |
from librosa.beat import beat_track
|
| 8 |
+
from diffusers import (DiffusionPipeline, DDPMPipeline, UNet2DConditionModel,
|
| 9 |
+
DDIMScheduler, DDPMScheduler, AutoencoderKL)
|
| 10 |
|
| 11 |
from .mel import Mel
|
| 12 |
|
| 13 |
+
VERSION = "1.2.0"
|
| 14 |
|
| 15 |
|
| 16 |
class AudioDiffusion:
|
|
|
|
| 43 |
hop_length=hop_length,
|
| 44 |
top_db=top_db)
|
| 45 |
self.model_id = model_id
|
| 46 |
+
try: # a bit hacky
|
| 47 |
+
self.pipe = LatentAudioDiffusionPipeline.from_pretrained(self.model_id)
|
| 48 |
+
except:
|
| 49 |
+
self.pipe = AudioDiffusionPipeline.from_pretrained(self.model_id)
|
| 50 |
+
|
| 51 |
if cuda:
|
| 52 |
self.pipe.to("cuda")
|
| 53 |
self.progress_bar = progress_bar or (lambda _: _)
|
|
|
|
| 60 |
"""Generate random mel spectrogram and convert to audio.
|
| 61 |
|
| 62 |
Args:
|
| 63 |
+
steps (int): number of de-noising steps to perform (defaults to num_train_timesteps)
|
| 64 |
generator (torch.Generator): random number generator or None
|
| 65 |
|
| 66 |
Returns:
|
| 67 |
PIL Image: mel spectrogram
|
| 68 |
(float, np.ndarray): sample rate and raw audio
|
| 69 |
"""
|
| 70 |
+
images, (sample_rate, audios) = self.pipe(mel=self.mel,
|
| 71 |
+
batch_size=1,
|
| 72 |
+
steps=steps,
|
| 73 |
+
generator=generator)
|
| 74 |
+
return images[0], (sample_rate, audios[0])
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
@torch.no_grad()
|
| 77 |
def generate_spectrogram_and_audio_from_audio(
|
|
|
|
| 102 |
(float, np.ndarray): sample rate and raw audio
|
| 103 |
"""
|
| 104 |
|
| 105 |
+
images, (sample_rate,
|
| 106 |
+
audios) = self.pipe(mel=self.mel,
|
| 107 |
+
batch_size=1,
|
| 108 |
+
audio_file=audio_file,
|
| 109 |
+
raw_audio=raw_audio,
|
| 110 |
+
slice=slice,
|
| 111 |
+
start_step=start_step,
|
| 112 |
+
steps=steps,
|
| 113 |
+
generator=generator,
|
| 114 |
+
mask_start_secs=mask_start_secs,
|
| 115 |
+
mask_end_secs=mask_end_secs)
|
| 116 |
+
return images[0], (sample_rate, audios[0])
|
| 117 |
+
|
| 118 |
+
@staticmethod
|
| 119 |
+
def loop_it(audio: np.ndarray,
|
| 120 |
+
sample_rate: int,
|
| 121 |
+
loops: int = 12) -> np.ndarray:
|
| 122 |
+
"""Loop audio
|
| 123 |
+
|
| 124 |
+
Args:
|
| 125 |
+
audio (np.ndarray): audio as numpy array
|
| 126 |
+
sample_rate (int): sample rate of audio
|
| 127 |
+
loops (int): number of times to loop
|
| 128 |
+
|
| 129 |
+
Returns:
|
| 130 |
+
(float, np.ndarray): sample rate and raw audio or None
|
| 131 |
+
"""
|
| 132 |
+
_, beats = beat_track(y=audio, sr=sample_rate, units='samples')
|
| 133 |
+
for beats_in_bar in [16, 12, 8, 4]:
|
| 134 |
+
if len(beats) > beats_in_bar:
|
| 135 |
+
return np.tile(audio[beats[0]:beats[beats_in_bar]], loops)
|
| 136 |
+
return None
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class AudioDiffusionPipeline(DiffusionPipeline):
|
| 140 |
+
|
| 141 |
+
def __init__(self, unet: UNet2DConditionModel,
|
| 142 |
+
scheduler: Union[DDIMScheduler, DDPMScheduler]):
|
| 143 |
+
super().__init__()
|
| 144 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
| 145 |
+
|
| 146 |
+
@torch.no_grad()
|
| 147 |
+
def __call__(
|
| 148 |
+
self,
|
| 149 |
+
mel: Mel,
|
| 150 |
+
batch_size: int = 1,
|
| 151 |
+
audio_file: str = None,
|
| 152 |
+
raw_audio: np.ndarray = None,
|
| 153 |
+
slice: int = 0,
|
| 154 |
+
start_step: int = 0,
|
| 155 |
+
steps: int = None,
|
| 156 |
+
generator: torch.Generator = None,
|
| 157 |
+
mask_start_secs: float = 0,
|
| 158 |
+
mask_end_secs: float = 0
|
| 159 |
+
) -> Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]]:
|
| 160 |
+
"""Generate random mel spectrogram from audio input and convert to audio.
|
| 161 |
+
|
| 162 |
+
Args:
|
| 163 |
+
mel (Mel): instance of Mel class to perform image <-> audio
|
| 164 |
+
batch_size (int): number of samples to generate
|
| 165 |
+
audio_file (str): must be a file on disk due to Librosa limitation or
|
| 166 |
+
raw_audio (np.ndarray): audio as numpy array
|
| 167 |
+
slice (int): slice number of audio to convert
|
| 168 |
+
start_step (int): step to start from
|
| 169 |
+
steps (int): number of de-noising steps to perform (defaults to num_train_timesteps)
|
| 170 |
+
generator (torch.Generator): random number generator or None
|
| 171 |
+
mask_start_secs (float): number of seconds of audio to mask (not generate) at start
|
| 172 |
+
mask_end_secs (float): number of seconds of audio to mask (not generate) at end
|
| 173 |
+
|
| 174 |
+
Returns:
|
| 175 |
+
List[PIL Image]: mel spectrograms
|
| 176 |
+
(float, List[np.ndarray]): sample rate and raw audios
|
| 177 |
+
"""
|
| 178 |
+
|
| 179 |
if steps is None:
|
| 180 |
+
steps = self.scheduler.num_train_timesteps
|
| 181 |
# Unfortunately, the schedule is set up in the constructor
|
| 182 |
+
scheduler = self.scheduler.__class__(num_train_timesteps=steps)
|
| 183 |
scheduler.set_timesteps(steps)
|
| 184 |
mask = None
|
| 185 |
images = noise = torch.randn(
|
| 186 |
+
(batch_size, self.unet.in_channels, self.unet.sample_size,
|
| 187 |
+
self.unet.sample_size),
|
| 188 |
generator=generator)
|
| 189 |
|
| 190 |
if audio_file is not None or raw_audio is not None:
|
| 191 |
+
mel.load_audio(audio_file, raw_audio)
|
| 192 |
+
input_image = mel.audio_slice_to_image(slice)
|
| 193 |
input_image = np.frombuffer(input_image.tobytes(),
|
| 194 |
dtype="uint8").reshape(
|
| 195 |
(input_image.height,
|
| 196 |
input_image.width))
|
| 197 |
input_image = ((input_image / 255) * 2 - 1)
|
| 198 |
+
input_images = np.tile(input_image, (batch_size, 1, 1, 1))
|
| 199 |
|
| 200 |
+
if hasattr(self, 'vqvae'):
|
| 201 |
+
input_images = self.vqvae.encode(
|
| 202 |
+
input_images).latent_dist.sample(generator=generator)
|
| 203 |
+
input_images = 0.18215 * input_images
|
| 204 |
|
| 205 |
if start_step > 0:
|
| 206 |
images[0, 0] = scheduler.add_noise(
|
| 207 |
+
torch.tensor(input_images[:, np.newaxis, np.newaxis, :]),
|
| 208 |
noise, torch.tensor(steps - start_step))
|
| 209 |
|
| 210 |
+
pixels_per_second = (mel.get_sample_rate() *
|
| 211 |
+
self.unet.sample_size / mel.hop_length /
|
| 212 |
+
mel.x_res)
|
| 213 |
mask_start = int(mask_start_secs * pixels_per_second)
|
| 214 |
mask_end = int(mask_end_secs * pixels_per_second)
|
| 215 |
mask = scheduler.add_noise(
|
| 216 |
+
torch.tensor(input_images[:, np.newaxis, :]), noise,
|
| 217 |
torch.tensor(scheduler.timesteps[start_step:]))
|
| 218 |
|
| 219 |
+
images = images.to(self.device)
|
| 220 |
for step, t in enumerate(
|
| 221 |
self.progress_bar(scheduler.timesteps[start_step:])):
|
| 222 |
+
model_output = self.unet(images, t)['sample']
|
| 223 |
images = scheduler.step(model_output,
|
| 224 |
t,
|
| 225 |
images,
|
|
|
|
| 227 |
|
| 228 |
if mask is not None:
|
| 229 |
if mask_start > 0:
|
| 230 |
+
images[:, :, :, :mask_start] = mask[
|
| 231 |
+
step, :, :, :, :mask_start]
|
| 232 |
if mask_end > 0:
|
| 233 |
+
images[:, :, :, -mask_end:] = mask[step, :, :, :,
|
| 234 |
+
-mask_end:]
|
| 235 |
|
| 236 |
+
if hasattr(self, 'vqvae'):
|
| 237 |
# 0.18215 was scaling factor used in training to ensure unit variance
|
|
|
|
| 238 |
images = 1 / 0.18215 * images
|
| 239 |
+
images = self.vqvae.decode(images)['sample']
|
| 240 |
|
| 241 |
images = (images / 2 + 0.5).clamp(0, 1)
|
| 242 |
images = images.cpu().permute(0, 2, 3, 1).numpy()
|
| 243 |
+
images = (images * 255).round().astype("uint8")
|
| 244 |
+
images = list(
|
| 245 |
+
map(lambda _: Image.fromarray(_[:, :, 0]), images) if images.
|
| 246 |
+
shape[3] == 1 else map(
|
| 247 |
+
lambda _: Image.fromarray(_, mode='RGB').convert('L'), images))
|
| 248 |
|
| 249 |
+
audios = list(map(lambda _: mel.image_to_audio(_), images))
|
| 250 |
+
return images, (mel.get_sample_rate(), audios)
|
|
|
|
| 251 |
|
|
|
|
|
|
|
| 252 |
|
| 253 |
+
class LatentAudioDiffusionPipeline(AudioDiffusionPipeline):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
+
def __init__(self, unet: UNet2DConditionModel,
|
| 256 |
+
scheduler: Union[DDIMScheduler,
|
| 257 |
+
DDPMScheduler], vqvae: AutoencoderKL):
|
| 258 |
+
super().__init__(unet=unet, scheduler=scheduler)
|
| 259 |
+
self.register_modules(vqvae=vqvae)
|
| 260 |
|
| 261 |
+
def __call__(self, *args, **kwargs):
|
| 262 |
+
return super().__call__(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config/ldm_autoencoder_kl.yaml
CHANGED
|
@@ -14,12 +14,12 @@ model:
|
|
| 14 |
|
| 15 |
ddconfig:
|
| 16 |
double_z: True
|
| 17 |
-
z_channels:
|
| 18 |
resolution: 256
|
| 19 |
in_channels: 3
|
| 20 |
out_ch: 3
|
| 21 |
ch: 128
|
| 22 |
-
ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1
|
| 23 |
num_res_blocks: 2
|
| 24 |
attn_resolutions: [ ]
|
| 25 |
dropout: 0.0
|
|
|
|
| 14 |
|
| 15 |
ddconfig:
|
| 16 |
double_z: True
|
| 17 |
+
z_channels: 4
|
| 18 |
resolution: 256
|
| 19 |
in_channels: 3
|
| 20 |
out_ch: 3
|
| 21 |
ch: 128
|
| 22 |
+
ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
|
| 23 |
num_res_blocks: 2
|
| 24 |
attn_resolutions: [ ]
|
| 25 |
dropout: 0.0
|
scripts/train_unconditional.py
CHANGED
|
@@ -5,12 +5,11 @@ import os
|
|
| 5 |
|
| 6 |
import torch
|
| 7 |
import torch.nn.functional as F
|
| 8 |
-
from PIL import Image
|
| 9 |
|
| 10 |
from accelerate import Accelerator
|
| 11 |
from accelerate.logging import get_logger
|
| 12 |
from datasets import load_from_disk, load_dataset
|
| 13 |
-
from diffusers import (
|
| 14 |
DDIMScheduler, AutoencoderKL)
|
| 15 |
from diffusers.hub_utils import init_git_repo, push_to_hub
|
| 16 |
from diffusers.optimization import get_scheduler
|
|
@@ -23,10 +22,12 @@ from torchvision.transforms import (
|
|
| 23 |
Resize,
|
| 24 |
ToTensor,
|
| 25 |
)
|
|
|
|
| 26 |
from tqdm.auto import tqdm
|
| 27 |
from librosa.util import normalize
|
| 28 |
|
| 29 |
from audiodiffusion.mel import Mel
|
|
|
|
| 30 |
|
| 31 |
logger = get_logger(__name__)
|
| 32 |
|
|
@@ -45,7 +46,7 @@ def main(args):
|
|
| 45 |
vqvae = AutoencoderKL.from_pretrained(args.vae)
|
| 46 |
|
| 47 |
if args.from_pretrained is not None:
|
| 48 |
-
model =
|
| 49 |
else:
|
| 50 |
model = UNet2DModel(
|
| 51 |
sample_size=args.resolution
|
|
@@ -237,12 +238,14 @@ def main(args):
|
|
| 237 |
if accelerator.is_main_process:
|
| 238 |
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
|
| 239 |
if args.vae is not None:
|
| 240 |
-
pipeline =
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
|
|
|
|
|
|
| 244 |
else:
|
| 245 |
-
pipeline =
|
| 246 |
unet=accelerator.unwrap_model(
|
| 247 |
ema_model.averaged_model if args.use_ema else model
|
| 248 |
),
|
|
@@ -267,33 +270,27 @@ def main(args):
|
|
| 267 |
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
|
| 268 |
generator = torch.manual_seed(42)
|
| 269 |
# run pipeline in inference (sample random noise and denoise)
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
)["sample"]
|
| 277 |
|
| 278 |
# denormalize the images and save to tensorboard
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
| 282 |
accelerator.trackers[0].writer.add_images(
|
| 283 |
-
"test_samples",
|
| 284 |
-
for _,
|
| 285 |
-
image = Image.fromarray(image[0])
|
| 286 |
-
|
| 287 |
-
if args.vae is not None and vqvae.config[
|
| 288 |
-
'out_channels'] == 3:
|
| 289 |
-
image = image.convert('L')
|
| 290 |
-
|
| 291 |
-
audio = mel.image_to_audio(image)
|
| 292 |
accelerator.trackers[0].writer.add_audio(
|
| 293 |
f"test_audio_{_}",
|
| 294 |
normalize(audio),
|
| 295 |
epoch,
|
| 296 |
-
sample_rate=
|
| 297 |
)
|
| 298 |
accelerator.wait_for_everyone()
|
| 299 |
|
|
@@ -353,7 +350,7 @@ if __name__ == "__main__":
|
|
| 353 |
parser.add_argument("--from_pretrained", type=str, default=None)
|
| 354 |
parser.add_argument("--start_epoch", type=int, default=0)
|
| 355 |
parser.add_argument("--num_train_steps", type=int, default=1000)
|
| 356 |
-
parser.add_argument("--latent_resolution", type=int, default=
|
| 357 |
parser.add_argument("--scheduler",
|
| 358 |
type=str,
|
| 359 |
default="ddpm",
|
|
|
|
| 5 |
|
| 6 |
import torch
|
| 7 |
import torch.nn.functional as F
|
|
|
|
| 8 |
|
| 9 |
from accelerate import Accelerator
|
| 10 |
from accelerate.logging import get_logger
|
| 11 |
from datasets import load_from_disk, load_dataset
|
| 12 |
+
from diffusers import (DiffusionPipeline, DDPMScheduler, UNet2DModel,
|
| 13 |
DDIMScheduler, AutoencoderKL)
|
| 14 |
from diffusers.hub_utils import init_git_repo, push_to_hub
|
| 15 |
from diffusers.optimization import get_scheduler
|
|
|
|
| 22 |
Resize,
|
| 23 |
ToTensor,
|
| 24 |
)
|
| 25 |
+
import numpy as np
|
| 26 |
from tqdm.auto import tqdm
|
| 27 |
from librosa.util import normalize
|
| 28 |
|
| 29 |
from audiodiffusion.mel import Mel
|
| 30 |
+
from audiodiffusion import LatentAudioDiffusionPipeline, AudioDiffusionPipeline
|
| 31 |
|
| 32 |
logger = get_logger(__name__)
|
| 33 |
|
|
|
|
| 46 |
vqvae = AutoencoderKL.from_pretrained(args.vae)
|
| 47 |
|
| 48 |
if args.from_pretrained is not None:
|
| 49 |
+
model = DiffusionPipeline.from_pretrained(args.from_pretrained).unet
|
| 50 |
else:
|
| 51 |
model = UNet2DModel(
|
| 52 |
sample_size=args.resolution
|
|
|
|
| 238 |
if accelerator.is_main_process:
|
| 239 |
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
|
| 240 |
if args.vae is not None:
|
| 241 |
+
pipeline = LatentAudioDiffusionPipeline(
|
| 242 |
+
unet=accelerator.unwrap_model(
|
| 243 |
+
ema_model.averaged_model if args.use_ema else model
|
| 244 |
+
),
|
| 245 |
+
vqvae=vqvae,
|
| 246 |
+
scheduler=noise_scheduler)
|
| 247 |
else:
|
| 248 |
+
pipeline = AudioDiffusionPipeline(
|
| 249 |
unet=accelerator.unwrap_model(
|
| 250 |
ema_model.averaged_model if args.use_ema else model
|
| 251 |
),
|
|
|
|
| 270 |
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
|
| 271 |
generator = torch.manual_seed(42)
|
| 272 |
# run pipeline in inference (sample random noise and denoise)
|
| 273 |
+
images, (sample_rate, audios) = pipeline(
|
| 274 |
+
mel=mel,
|
| 275 |
+
generator=generator,
|
| 276 |
+
batch_size=args.eval_batch_size,
|
| 277 |
+
steps=args.num_train_steps,
|
| 278 |
+
)
|
|
|
|
| 279 |
|
| 280 |
# denormalize the images and save to tensorboard
|
| 281 |
+
images = np.array([
|
| 282 |
+
np.frombuffer(image.tobytes(), dtype="uint8").reshape(
|
| 283 |
+
(len(image.getbands()), image.height, image.width))
|
| 284 |
+
for image in images
|
| 285 |
+
])
|
| 286 |
accelerator.trackers[0].writer.add_images(
|
| 287 |
+
"test_samples", images, epoch)
|
| 288 |
+
for _, audio in enumerate(audios):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
accelerator.trackers[0].writer.add_audio(
|
| 290 |
f"test_audio_{_}",
|
| 291 |
normalize(audio),
|
| 292 |
epoch,
|
| 293 |
+
sample_rate=sample_rate,
|
| 294 |
)
|
| 295 |
accelerator.wait_for_everyone()
|
| 296 |
|
|
|
|
| 350 |
parser.add_argument("--from_pretrained", type=str, default=None)
|
| 351 |
parser.add_argument("--start_epoch", type=int, default=0)
|
| 352 |
parser.add_argument("--num_train_steps", type=int, default=1000)
|
| 353 |
+
parser.add_argument("--latent_resolution", type=int, default=None)
|
| 354 |
parser.add_argument("--scheduler",
|
| 355 |
type=str,
|
| 356 |
default="ddpm",
|
scripts/train_vae.py
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
# pip install -e git+https://github.com/CompVis/stable-diffusion.git@master
|
| 2 |
# pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
| 3 |
-
# convert_original_stable_diffusion_to_diffusers.py
|
| 4 |
|
| 5 |
# TODO
|
| 6 |
# grayscale
|
| 7 |
-
# update generate from audio to include vae step
|
| 8 |
|
| 9 |
import os
|
| 10 |
import argparse
|
|
|
|
| 1 |
# pip install -e git+https://github.com/CompVis/stable-diffusion.git@master
|
| 2 |
# pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
|
|
|
| 3 |
|
| 4 |
# TODO
|
| 5 |
# grayscale
|
|
|
|
| 6 |
|
| 7 |
import os
|
| 8 |
import argparse
|