Spaces:
Runtime error
Runtime error
log audio to tensorboard
Browse files- .gitignore +5 -2
- README.md +2 -2
- ldm_autoencoder_kl.yaml +32 -0
- train_unconditional.py +27 -7
- train_vae.py +214 -0
.gitignore
CHANGED
|
@@ -3,6 +3,9 @@ __pycache__
|
|
| 3 |
.ipynb_checkpoints
|
| 4 |
data*
|
| 5 |
ddpm-ema-audio-*
|
| 6 |
-
flagged
|
| 7 |
-
build
|
| 8 |
audiodiffusion.egg-info
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
.ipynb_checkpoints
|
| 4 |
data*
|
| 5 |
ddpm-ema-audio-*
|
| 6 |
+
flagged/
|
| 7 |
+
build/
|
| 8 |
audiodiffusion.egg-info
|
| 9 |
+
lightning_logs/
|
| 10 |
+
taming/
|
| 11 |
+
checkpoints/
|
README.md
CHANGED
|
@@ -89,7 +89,7 @@ accelerate launch --config_file accelerate_local.yaml \
|
|
| 89 |
train_unconditional.py \
|
| 90 |
--dataset_name teticio/audio-diffusion-256 \
|
| 91 |
--resolution 256 \
|
| 92 |
-
--output_dir
|
| 93 |
--num_epochs 100 \
|
| 94 |
--train_batch_size 2 \
|
| 95 |
--eval_batch_size 2 \
|
|
@@ -98,7 +98,7 @@ accelerate launch --config_file accelerate_local.yaml \
|
|
| 98 |
--lr_warmup_steps 500 \
|
| 99 |
--mixed_precision no \
|
| 100 |
--push_to_hub True \
|
| 101 |
-
--hub_model_id audio-diffusion-256 \
|
| 102 |
--hub_token $(cat $HOME/.huggingface/token)
|
| 103 |
```
|
| 104 |
|
|
|
|
| 89 |
train_unconditional.py \
|
| 90 |
--dataset_name teticio/audio-diffusion-256 \
|
| 91 |
--resolution 256 \
|
| 92 |
+
--output_dir latent-audio-diffusion-256 \
|
| 93 |
--num_epochs 100 \
|
| 94 |
--train_batch_size 2 \
|
| 95 |
--eval_batch_size 2 \
|
|
|
|
| 98 |
--lr_warmup_steps 500 \
|
| 99 |
--mixed_precision no \
|
| 100 |
--push_to_hub True \
|
| 101 |
+
--hub_model_id latent-audio-diffusion-256 \
|
| 102 |
--hub_token $(cat $HOME/.huggingface/token)
|
| 103 |
```
|
| 104 |
|
ldm_autoencoder_kl.yaml
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
model:
|
| 3 |
+
base_learning_rate: 4.5e-6
|
| 4 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
| 5 |
+
params:
|
| 6 |
+
monitor: "val/rec_loss"
|
| 7 |
+
embed_dim: 3
|
| 8 |
+
lossconfig:
|
| 9 |
+
target: ldm.modules.losses.LPIPSWithDiscriminator
|
| 10 |
+
params:
|
| 11 |
+
disc_start: 50001
|
| 12 |
+
kl_weight: 0.000001
|
| 13 |
+
disc_weight: 0.5
|
| 14 |
+
|
| 15 |
+
ddconfig:
|
| 16 |
+
double_z: True
|
| 17 |
+
z_channels: 3
|
| 18 |
+
resolution: 256
|
| 19 |
+
in_channels: 3
|
| 20 |
+
out_ch: 3
|
| 21 |
+
ch: 128
|
| 22 |
+
ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1
|
| 23 |
+
num_res_blocks: 2
|
| 24 |
+
attn_resolutions: [ ]
|
| 25 |
+
dropout: 0.0
|
| 26 |
+
|
| 27 |
+
lightning:
|
| 28 |
+
trainer:
|
| 29 |
+
benchmark: True
|
| 30 |
+
accumulate_grad_batches: 24
|
| 31 |
+
accelerator: gpu
|
| 32 |
+
devices: 1
|
train_unconditional.py
CHANGED
|
@@ -10,7 +10,8 @@ from PIL import Image
|
|
| 10 |
from accelerate import Accelerator
|
| 11 |
from accelerate.logging import get_logger
|
| 12 |
from datasets import load_from_disk, load_dataset
|
| 13 |
-
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
|
|
|
|
| 14 |
from diffusers.hub_utils import init_git_repo, push_to_hub
|
| 15 |
from diffusers.optimization import get_scheduler
|
| 16 |
from diffusers.training_utils import EMAModel
|
|
@@ -40,8 +41,16 @@ def main(args):
|
|
| 40 |
)
|
| 41 |
|
| 42 |
if args.from_pretrained is not None:
|
| 43 |
-
model = DDPMPipeline.from_pretrained(args.from_pretrained).unet
|
|
|
|
|
|
|
|
|
|
| 44 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
model = UNet2DModel(
|
| 46 |
sample_size=args.resolution,
|
| 47 |
in_channels=1,
|
|
@@ -65,7 +74,10 @@ def main(args):
|
|
| 65 |
"UpBlock2D",
|
| 66 |
),
|
| 67 |
)
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
| 69 |
tensor_format="pt")
|
| 70 |
optimizer = torch.optim.AdamW(
|
| 71 |
model.parameters(),
|
|
@@ -169,14 +181,16 @@ def main(args):
|
|
| 169 |
device=clean_images.device,
|
| 170 |
).long()
|
| 171 |
|
|
|
|
| 172 |
# Add noise to the clean images according to the noise magnitude at each timestep
|
| 173 |
# (this is the forward diffusion process)
|
| 174 |
-
|
| 175 |
-
|
| 176 |
|
| 177 |
with accelerator.accumulate(model):
|
| 178 |
# Predict the noise residual
|
| 179 |
-
|
|
|
|
| 180 |
loss = F.mse_loss(noise_pred, noise)
|
| 181 |
accelerator.backward(loss)
|
| 182 |
|
|
@@ -205,9 +219,15 @@ def main(args):
|
|
| 205 |
# Generate sample images for visual inspection
|
| 206 |
if accelerator.is_main_process:
|
| 207 |
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
|
| 208 |
-
pipeline = DDPMPipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
unet=accelerator.unwrap_model(
|
| 210 |
ema_model.averaged_model if args.use_ema else model),
|
|
|
|
| 211 |
scheduler=noise_scheduler,
|
| 212 |
)
|
| 213 |
|
|
|
|
| 10 |
from accelerate import Accelerator
|
| 11 |
from accelerate.logging import get_logger
|
| 12 |
from datasets import load_from_disk, load_dataset
|
| 13 |
+
from diffusers import (DDPMPipeline, DDPMScheduler, UNet2DModel, LDMPipeline,
|
| 14 |
+
DDIMScheduler, VQModel)
|
| 15 |
from diffusers.hub_utils import init_git_repo, push_to_hub
|
| 16 |
from diffusers.optimization import get_scheduler
|
| 17 |
from diffusers.training_utils import EMAModel
|
|
|
|
| 41 |
)
|
| 42 |
|
| 43 |
if args.from_pretrained is not None:
|
| 44 |
+
#model = DDPMPipeline.from_pretrained(args.from_pretrained).unet
|
| 45 |
+
pretrained = LDMPipeline.from_pretrained(args.from_pretrained)
|
| 46 |
+
vqvae = pretrained.vqvae
|
| 47 |
+
model = pretrained.unet
|
| 48 |
else:
|
| 49 |
+
vqvae = VQModel(sample_size=args.resolution,
|
| 50 |
+
in_channels=1,
|
| 51 |
+
out_channels=1,
|
| 52 |
+
latent_channels=1,
|
| 53 |
+
layers_per_block=2)
|
| 54 |
model = UNet2DModel(
|
| 55 |
sample_size=args.resolution,
|
| 56 |
in_channels=1,
|
|
|
|
| 74 |
"UpBlock2D",
|
| 75 |
),
|
| 76 |
)
|
| 77 |
+
|
| 78 |
+
#noise_scheduler = DDPMScheduler(num_train_timesteps=1000,
|
| 79 |
+
# tensor_format="pt")
|
| 80 |
+
noise_scheduler = DDIMScheduler(num_train_timesteps=1000,
|
| 81 |
tensor_format="pt")
|
| 82 |
optimizer = torch.optim.AdamW(
|
| 83 |
model.parameters(),
|
|
|
|
| 181 |
device=clean_images.device,
|
| 182 |
).long()
|
| 183 |
|
| 184 |
+
clean_latents = vqvae.encode(clean_images)["sample"]
|
| 185 |
# Add noise to the clean images according to the noise magnitude at each timestep
|
| 186 |
# (this is the forward diffusion process)
|
| 187 |
+
noisy_latents = noise_scheduler.add_noise(clean_latents, noise,
|
| 188 |
+
timesteps)
|
| 189 |
|
| 190 |
with accelerator.accumulate(model):
|
| 191 |
# Predict the noise residual
|
| 192 |
+
latents = model(noisy_latents, timesteps)["sample"]
|
| 193 |
+
noise_pred = vqvae.decode(latents)["sample"]
|
| 194 |
loss = F.mse_loss(noise_pred, noise)
|
| 195 |
accelerator.backward(loss)
|
| 196 |
|
|
|
|
| 219 |
# Generate sample images for visual inspection
|
| 220 |
if accelerator.is_main_process:
|
| 221 |
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
|
| 222 |
+
#pipeline = DDPMPipeline(
|
| 223 |
+
# unet=accelerator.unwrap_model(
|
| 224 |
+
# ema_model.averaged_model if args.use_ema else model),
|
| 225 |
+
# scheduler=noise_scheduler,
|
| 226 |
+
#)
|
| 227 |
+
pipeline = LDMPipeline(
|
| 228 |
unet=accelerator.unwrap_model(
|
| 229 |
ema_model.averaged_model if args.use_ema else model),
|
| 230 |
+
vqvae=vqvae,
|
| 231 |
scheduler=noise_scheduler,
|
| 232 |
)
|
| 233 |
|
train_vae.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pip install -e git+https://github.com/CompVis/stable-diffusion.git@master
|
| 2 |
+
# pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
| 3 |
+
# convert_original_stable_diffusion_to_diffusers.py
|
| 4 |
+
|
| 5 |
+
# TODO
|
| 6 |
+
# grayscale
|
| 7 |
+
# log audio
|
| 8 |
+
# convert to huggingface / train huggingface
|
| 9 |
+
|
| 10 |
+
import os
|
| 11 |
+
import argparse
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
import torchvision
|
| 15 |
+
import numpy as np
|
| 16 |
+
from PIL import Image
|
| 17 |
+
import pytorch_lightning as pl
|
| 18 |
+
from omegaconf import OmegaConf
|
| 19 |
+
from datasets import load_dataset
|
| 20 |
+
from librosa.util import normalize
|
| 21 |
+
from ldm.util import instantiate_from_config
|
| 22 |
+
from pytorch_lightning.trainer import Trainer
|
| 23 |
+
from torch.utils.data import DataLoader, Dataset
|
| 24 |
+
from pytorch_lightning.callbacks import Callback, ModelCheckpoint
|
| 25 |
+
|
| 26 |
+
from audiodiffusion.mel import Mel
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class AudioDiffusion(Dataset):
|
| 30 |
+
|
| 31 |
+
def __init__(self, model_id):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.hf_dataset = load_dataset(model_id)['train']
|
| 34 |
+
|
| 35 |
+
def __len__(self):
|
| 36 |
+
return len(self.hf_dataset)
|
| 37 |
+
|
| 38 |
+
def __getitem__(self, idx):
|
| 39 |
+
image = self.hf_dataset[idx]['image'].convert('RGB')
|
| 40 |
+
image = np.frombuffer(image.tobytes(), dtype="uint8").reshape(
|
| 41 |
+
(image.height, image.width, 3))
|
| 42 |
+
image = ((image / 255) * 2 - 1)
|
| 43 |
+
return {'image': image}
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class AudioDiffusionDataModule(pl.LightningDataModule):
|
| 47 |
+
|
| 48 |
+
def __init__(self, model_id, batch_size):
|
| 49 |
+
super().__init__()
|
| 50 |
+
self.batch_size = batch_size
|
| 51 |
+
self.dataset = AudioDiffusion(model_id)
|
| 52 |
+
self.num_workers = 1
|
| 53 |
+
|
| 54 |
+
def train_dataloader(self):
|
| 55 |
+
return DataLoader(self.dataset,
|
| 56 |
+
batch_size=self.batch_size,
|
| 57 |
+
num_workers=self.num_workers)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# from https://github.com/CompVis/stable-diffusion/blob/main/main.py
|
| 61 |
+
class ImageLogger(Callback):
|
| 62 |
+
|
| 63 |
+
def __init__(self,
|
| 64 |
+
batch_frequency,
|
| 65 |
+
max_images,
|
| 66 |
+
clamp=True,
|
| 67 |
+
increase_log_steps=True,
|
| 68 |
+
rescale=True,
|
| 69 |
+
disabled=False,
|
| 70 |
+
log_on_batch_idx=False,
|
| 71 |
+
log_first_step=False,
|
| 72 |
+
log_images_kwargs=None,
|
| 73 |
+
resolution=256,
|
| 74 |
+
hop_length=512):
|
| 75 |
+
super().__init__()
|
| 76 |
+
self.mel = Mel(x_res=resolution,
|
| 77 |
+
y_res=resolution,
|
| 78 |
+
hop_length=hop_length)
|
| 79 |
+
self.rescale = rescale
|
| 80 |
+
self.batch_freq = batch_frequency
|
| 81 |
+
self.max_images = max_images
|
| 82 |
+
self.logger_log_images = {
|
| 83 |
+
pl.loggers.TensorBoardLogger: self._testtube,
|
| 84 |
+
}
|
| 85 |
+
self.log_steps = [
|
| 86 |
+
2**n for n in range(int(np.log2(self.batch_freq)) + 1)
|
| 87 |
+
]
|
| 88 |
+
if not increase_log_steps:
|
| 89 |
+
self.log_steps = [self.batch_freq]
|
| 90 |
+
self.clamp = clamp
|
| 91 |
+
self.disabled = disabled
|
| 92 |
+
self.log_on_batch_idx = log_on_batch_idx
|
| 93 |
+
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
|
| 94 |
+
self.log_first_step = log_first_step
|
| 95 |
+
|
| 96 |
+
#@rank_zero_only
|
| 97 |
+
def _testtube(self, pl_module, images, batch_idx, split):
|
| 98 |
+
for k in images:
|
| 99 |
+
images_ = (images[k] + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
| 100 |
+
grid = torchvision.utils.make_grid(images_)
|
| 101 |
+
|
| 102 |
+
tag = f"{split}/{k}"
|
| 103 |
+
pl_module.logger.experiment.add_image(
|
| 104 |
+
tag, grid, global_step=pl_module.global_step)
|
| 105 |
+
|
| 106 |
+
for _, image in enumerate(images_):
|
| 107 |
+
image = (images_.numpy() *
|
| 108 |
+
255).round().astype("uint8").transpose(0, 2, 3, 1)
|
| 109 |
+
audio = self.mel.image_to_audio(
|
| 110 |
+
Image.fromarray(image[0], mode='RGB').convert('L'))
|
| 111 |
+
pl_module.logger.experiment.add_audio(
|
| 112 |
+
tag + f"/{_}",
|
| 113 |
+
normalize(audio),
|
| 114 |
+
global_step=pl_module.global_step,
|
| 115 |
+
sample_rate=self.mel.get_sample_rate())
|
| 116 |
+
|
| 117 |
+
#@rank_zero_only
|
| 118 |
+
def log_local(self, save_dir, split, images, global_step, current_epoch,
|
| 119 |
+
batch_idx):
|
| 120 |
+
root = os.path.join(save_dir, "images", split)
|
| 121 |
+
for k in images:
|
| 122 |
+
grid = torchvision.utils.make_grid(images[k], nrow=4)
|
| 123 |
+
if self.rescale:
|
| 124 |
+
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
| 125 |
+
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
| 126 |
+
grid = grid.numpy()
|
| 127 |
+
grid = (grid * 255).astype(np.uint8)
|
| 128 |
+
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
|
| 129 |
+
k, global_step, current_epoch, batch_idx)
|
| 130 |
+
path = os.path.join(root, filename)
|
| 131 |
+
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
| 132 |
+
Image.fromarray(grid).save(path)
|
| 133 |
+
|
| 134 |
+
def log_img(self, pl_module, batch, batch_idx, split="train"):
|
| 135 |
+
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
|
| 136 |
+
if (self.check_frequency(check_idx)
|
| 137 |
+
and # batch_idx % self.batch_freq == 0
|
| 138 |
+
hasattr(pl_module, "log_images") and
|
| 139 |
+
callable(pl_module.log_images) and self.max_images > 0):
|
| 140 |
+
logger = type(pl_module.logger)
|
| 141 |
+
|
| 142 |
+
is_train = pl_module.training
|
| 143 |
+
if is_train:
|
| 144 |
+
pl_module.eval()
|
| 145 |
+
|
| 146 |
+
with torch.no_grad():
|
| 147 |
+
images = pl_module.log_images(batch,
|
| 148 |
+
split=split,
|
| 149 |
+
**self.log_images_kwargs)
|
| 150 |
+
|
| 151 |
+
for k in images:
|
| 152 |
+
N = min(images[k].shape[0], self.max_images)
|
| 153 |
+
images[k] = images[k][:N]
|
| 154 |
+
if isinstance(images[k], torch.Tensor):
|
| 155 |
+
images[k] = images[k].detach().cpu()
|
| 156 |
+
if self.clamp:
|
| 157 |
+
images[k] = torch.clamp(images[k], -1., 1.)
|
| 158 |
+
|
| 159 |
+
#self.log_local(pl_module.logger.save_dir, split, images,
|
| 160 |
+
# pl_module.global_step, pl_module.current_epoch,
|
| 161 |
+
# batch_idx)
|
| 162 |
+
|
| 163 |
+
logger_log_images = self.logger_log_images.get(
|
| 164 |
+
logger, lambda *args, **kwargs: None)
|
| 165 |
+
logger_log_images(pl_module, images, pl_module.global_step, split)
|
| 166 |
+
|
| 167 |
+
if is_train:
|
| 168 |
+
pl_module.train()
|
| 169 |
+
|
| 170 |
+
def check_frequency(self, check_idx):
|
| 171 |
+
if ((check_idx % self.batch_freq) == 0 or
|
| 172 |
+
(check_idx in self.log_steps)) and (check_idx > 0
|
| 173 |
+
or self.log_first_step):
|
| 174 |
+
try:
|
| 175 |
+
self.log_steps.pop(0)
|
| 176 |
+
except IndexError as e:
|
| 177 |
+
#print(e)
|
| 178 |
+
pass
|
| 179 |
+
return True
|
| 180 |
+
return False
|
| 181 |
+
|
| 182 |
+
def on_train_batch_end(self, trainer, pl_module, outputs, batch,
|
| 183 |
+
batch_idx):
|
| 184 |
+
if not self.disabled and (pl_module.global_step > 0
|
| 185 |
+
or self.log_first_step):
|
| 186 |
+
self.log_img(pl_module, batch, batch_idx, split="train")
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
if __name__ == "__main__":
|
| 190 |
+
parser = argparse.ArgumentParser(description="Train VAE using ldm.")
|
| 191 |
+
parser.add_argument("--batch_size", type=int, default=1)
|
| 192 |
+
args = parser.parse_args()
|
| 193 |
+
|
| 194 |
+
config = OmegaConf.load('ldm_autoencoder_kl.yaml')
|
| 195 |
+
lightning_config = config.pop("lightning", OmegaConf.create())
|
| 196 |
+
trainer_config = lightning_config.get("trainer", OmegaConf.create())
|
| 197 |
+
trainer_opt = argparse.Namespace(**trainer_config)
|
| 198 |
+
trainer = Trainer.from_argparse_args(
|
| 199 |
+
trainer_opt,
|
| 200 |
+
callbacks=[
|
| 201 |
+
ImageLogger(batch_frequency=1000,
|
| 202 |
+
max_images=8,
|
| 203 |
+
increase_log_steps=False,
|
| 204 |
+
log_on_batch_idx=True),
|
| 205 |
+
ModelCheckpoint(dirpath='checkpoints',
|
| 206 |
+
filename='{epoch:06}',
|
| 207 |
+
verbose=True,
|
| 208 |
+
save_last=True)
|
| 209 |
+
])
|
| 210 |
+
model = instantiate_from_config(config.model)
|
| 211 |
+
model.learning_rate = config.model.base_learning_rate
|
| 212 |
+
data = AudioDiffusionDataModule('teticio/audio-diffusion-256',
|
| 213 |
+
batch_size=args.batch_size)
|
| 214 |
+
trainer.fit(model, data)
|