Spaces:
Runtime error
Runtime error
add gradio app
Browse files- README.md +1 -1
- app.py +38 -0
- notebooks/test-model.ipynb +0 -0
- requirements.txt +5 -8
README.md
CHANGED
|
@@ -6,7 +6,7 @@
|
|
| 6 |
|
| 7 |

|
| 8 |
|
| 9 |
-
Audio can be represented as images by transforming to a [mel spectrogram](https://en.wikipedia.org/wiki/Mel-frequency_cepstrum), such as the one shown above. The class `Mel` in `mel.py` can convert a slice of audio into a mel spectrogram of `x_res` x `y_res` and vice
|
| 10 |
|
| 11 |
A DDPM model is trained on a set of mel spectrograms that have been generated from a directory of audio files. It is then used to synthesize similar mel spectrograms, which are then converted back into audio. See the `test-model.ipynb` notebook for an example.
|
| 12 |
|
|
|
|
| 6 |
|
| 7 |

|
| 8 |
|
| 9 |
+
Audio can be represented as images by transforming to a [mel spectrogram](https://en.wikipedia.org/wiki/Mel-frequency_cepstrum), such as the one shown above. The class `Mel` in `mel.py` can convert a slice of audio into a mel spectrogram of `x_res` x `y_res` and vice versa. The higher the resolution, the less audio information will be lost. You can see how this works in the `test-mel.ipynb` notebook.
|
| 10 |
|
| 11 |
A DDPM model is trained on a set of mel spectrograms that have been generated from a directory of audio files. It is then used to synthesize similar mel spectrograms, which are then converted back into audio. See the `test-model.ipynb` notebook for an example.
|
| 12 |
|
app.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from diffusers import DDPMPipeline
|
| 6 |
+
|
| 7 |
+
from src.mel import Mel
|
| 8 |
+
|
| 9 |
+
mel = Mel(x_res=256, y_res=256)
|
| 10 |
+
model_id = "teticio/audio-diffusion-256"
|
| 11 |
+
ddpm = DDPMPipeline.from_pretrained(model_id)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def generate_spectrogram_and_audio():
|
| 15 |
+
images = ddpm(output_type="numpy")["sample"]
|
| 16 |
+
images = (images * 255).round().astype("uint8").transpose(0, 3, 1, 2)
|
| 17 |
+
image = Image.fromarray(images[0][0])
|
| 18 |
+
audio = mel.image_to_audio(image)
|
| 19 |
+
return image, (mel.get_sample_rate(), audio)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
if __name__ == "__main__":
|
| 23 |
+
parser = argparse.ArgumentParser()
|
| 24 |
+
parser.add_argument("--port", type=int)
|
| 25 |
+
parser.add_argument("--server", type=int)
|
| 26 |
+
args = parser.parse_args()
|
| 27 |
+
|
| 28 |
+
demo = gr.Interface(
|
| 29 |
+
fn=generate_spectrogram_and_audio,
|
| 30 |
+
title="Audio Diffusion",
|
| 31 |
+
description=f"Generate audio using Huggingface diffusers",
|
| 32 |
+
inputs=[],
|
| 33 |
+
outputs=[
|
| 34 |
+
gr.Image(label="Mel spectrogram", image_mode="L"),
|
| 35 |
+
gr.Audio(label="Audio"),
|
| 36 |
+
],
|
| 37 |
+
)
|
| 38 |
+
demo.launch(server_name=args.server or "0.0.0.0", server_port=args.port)
|
notebooks/test-model.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
CHANGED
|
@@ -1,8 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
numpy
|
| 4 |
-
Pillow
|
| 5 |
-
|
| 6 |
-
datasets==2.4.0
|
| 7 |
-
diffusers==0.1.3
|
| 8 |
-
tqdm==4.64.0
|
|
|
|
| 1 |
+
# for Hugging Face spaces
|
| 2 |
+
torch
|
| 3 |
+
numpy
|
| 4 |
+
Pillow
|
| 5 |
+
diffusers
|
|
|
|
|
|
|
|
|