Spaces:
Runtime error
Runtime error
consolidate notebooks
Browse files- README.md +4 -6
- notebooks/test_model.ipynb +24 -51
- notebooks/test_model_breaks.ipynb +0 -0
README.md
CHANGED
|
@@ -9,14 +9,13 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
license: gpl-3.0
|
| 11 |
---
|
| 12 |
-
|
| 13 |
-
# audio-diffusion
|
| 14 |
|
| 15 |
### Apply [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) using the new Hugging Face [diffusers](https://github.com/huggingface/diffusers) package to synthesize music instead of images.
|
| 16 |
|
| 17 |
---
|
| 18 |
|
| 19 |
-
**UPDATE**: I've trained a new [model](https://huggingface.co/teticio/audio-diffusion-breaks-256) on 30,000 samples that have been used in music, sourced from [WhoSampled](https://whosampled.com) and [YouTube](https://youtube.com). The idea is that the model could be used to generate loops or "breaks" that can be sampled to make new tracks. People ("crate diggers") go to a lot of lengths or are willing to pay a lot of money to find breaks in old records.
|
| 20 |
|
| 21 |
---
|
| 22 |
|
|
@@ -26,10 +25,9 @@ license: gpl-3.0
|
|
| 26 |
|
| 27 |
Audio can be represented as images by transforming to a [mel spectrogram](https://en.wikipedia.org/wiki/Mel-frequency_cepstrum), such as the one shown above. The class `Mel` in `mel.py` can convert a slice of audio into a mel spectrogram of `x_res` x `y_res` and vice versa. The higher the resolution, the less audio information will be lost. You can see how this works in the [`test_mel.ipynb`](https://github.com/teticio/audio-diffusion/blob/main/notebooks/test_mel.ipynb) notebook.
|
| 28 |
|
| 29 |
-
A DDPM model is trained on a set of mel spectrograms that have been generated from a directory of audio files. It is then used to synthesize similar mel spectrograms, which are then converted back into audio.
|
| 30 |
-
|
| 31 |
-
You can play around with the model I trained on about 500 songs from my Spotify "liked" playlist on [Google Colab](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb) or [Hugging Face spaces](https://huggingface.co/spaces/teticio/audio-diffusion). Check out some automatically generated loops [here](https://soundcloud.com/teticio2/sets/audio-diffusion-loops).
|
| 32 |
|
|
|
|
| 33 |
|
| 34 |
---
|
| 35 |
|
|
|
|
| 9 |
pinned: false
|
| 10 |
license: gpl-3.0
|
| 11 |
---
|
| 12 |
+
# audio-diffusion [](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb)
|
|
|
|
| 13 |
|
| 14 |
### Apply [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) using the new Hugging Face [diffusers](https://github.com/huggingface/diffusers) package to synthesize music instead of images.
|
| 15 |
|
| 16 |
---
|
| 17 |
|
| 18 |
+
**UPDATE**: I've trained a new [model](https://huggingface.co/teticio/audio-diffusion-breaks-256) on 30,000 samples that have been used in music, sourced from [WhoSampled](https://whosampled.com) and [YouTube](https://youtube.com). The idea is that the model could be used to generate loops or "breaks" that can be sampled to make new tracks. People ("crate diggers") go to a lot of lengths or are willing to pay a lot of money to find breaks in old records.
|
| 19 |
|
| 20 |
---
|
| 21 |
|
|
|
|
| 25 |
|
| 26 |
Audio can be represented as images by transforming to a [mel spectrogram](https://en.wikipedia.org/wiki/Mel-frequency_cepstrum), such as the one shown above. The class `Mel` in `mel.py` can convert a slice of audio into a mel spectrogram of `x_res` x `y_res` and vice versa. The higher the resolution, the less audio information will be lost. You can see how this works in the [`test_mel.ipynb`](https://github.com/teticio/audio-diffusion/blob/main/notebooks/test_mel.ipynb) notebook.
|
| 27 |
|
| 28 |
+
A DDPM model is trained on a set of mel spectrograms that have been generated from a directory of audio files. It is then used to synthesize similar mel spectrograms, which are then converted back into audio.
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
You can play around with the model on [Google Colab](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb) or [Hugging Face spaces](https://huggingface.co/spaces/teticio/audio-diffusion). Check out some automatically generated loops [here](https://soundcloud.com/teticio2/sets/audio-diffusion-loops).
|
| 31 |
|
| 32 |
---
|
| 33 |
|
notebooks/test_model.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "markdown",
|
| 5 |
-
"id": "
|
| 6 |
"metadata": {},
|
| 7 |
"source": [
|
| 8 |
"<a href=\"https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
|
@@ -51,6 +51,26 @@
|
|
| 51 |
"from audiodiffusion import AudioDiffusion"
|
| 52 |
]
|
| 53 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
{
|
| 55 |
"cell_type": "markdown",
|
| 56 |
"id": "011fb5a1",
|
|
@@ -61,12 +81,12 @@
|
|
| 61 |
},
|
| 62 |
{
|
| 63 |
"cell_type": "code",
|
| 64 |
-
"execution_count":
|
| 65 |
"id": "a3d45c36",
|
| 66 |
"metadata": {},
|
| 67 |
"outputs": [],
|
| 68 |
"source": [
|
| 69 |
-
"audio_diffusion = AudioDiffusion(model_id
|
| 70 |
]
|
| 71 |
},
|
| 72 |
{
|
|
@@ -112,7 +132,7 @@
|
|
| 112 |
"metadata": {},
|
| 113 |
"outputs": [],
|
| 114 |
"source": [
|
| 115 |
-
"ds = load_dataset(
|
| 116 |
]
|
| 117 |
},
|
| 118 |
{
|
|
@@ -168,53 +188,6 @@
|
|
| 168 |
"Audio(data=audio, rate=mel.get_sample_rate())"
|
| 169 |
]
|
| 170 |
},
|
| 171 |
-
{
|
| 172 |
-
"cell_type": "markdown",
|
| 173 |
-
"id": "946fdb4d",
|
| 174 |
-
"metadata": {},
|
| 175 |
-
"source": [
|
| 176 |
-
"### Push model to hub"
|
| 177 |
-
]
|
| 178 |
-
},
|
| 179 |
-
{
|
| 180 |
-
"cell_type": "code",
|
| 181 |
-
"execution_count": null,
|
| 182 |
-
"id": "37c0564e",
|
| 183 |
-
"metadata": {},
|
| 184 |
-
"outputs": [],
|
| 185 |
-
"source": [
|
| 186 |
-
"from diffusers.hub_utils import init_git_repo, push_to_hub\n",
|
| 187 |
-
"\n",
|
| 188 |
-
"\n",
|
| 189 |
-
"class AttributeDict(dict):\n",
|
| 190 |
-
"\n",
|
| 191 |
-
" def __getattr__(self, attr):\n",
|
| 192 |
-
" return self[attr]\n",
|
| 193 |
-
"\n",
|
| 194 |
-
" def __setattr__(self, attr, value):\n",
|
| 195 |
-
" self[attr] = value\n",
|
| 196 |
-
"\n",
|
| 197 |
-
"\n",
|
| 198 |
-
"args = AttributeDict({\n",
|
| 199 |
-
" \"hub_model_id\":\n",
|
| 200 |
-
" \"teticio/audio-diffusion-256\",\n",
|
| 201 |
-
" \"output_dir\":\n",
|
| 202 |
-
" \"../ddpm-ema-audio-256-repo\",\n",
|
| 203 |
-
" \"local_rank\":\n",
|
| 204 |
-
" -1,\n",
|
| 205 |
-
" \"hub_token\":\n",
|
| 206 |
-
" open(os.path.join(os.environ['HOME'], '.huggingface/token'), 'rt').read(),\n",
|
| 207 |
-
" \"hub_private_repo\":\n",
|
| 208 |
-
" False,\n",
|
| 209 |
-
" \"overwrite_output_dir\":\n",
|
| 210 |
-
" False\n",
|
| 211 |
-
"})\n",
|
| 212 |
-
"\n",
|
| 213 |
-
"repo = init_git_repo(args, at_init=True)\n",
|
| 214 |
-
"ddpm = DDPMPipeline.from_pretrained('../ddpm-ema-audio-256')\n",
|
| 215 |
-
"push_to_hub(args, ddpm, repo)"
|
| 216 |
-
]
|
| 217 |
-
},
|
| 218 |
{
|
| 219 |
"cell_type": "code",
|
| 220 |
"execution_count": null,
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "markdown",
|
| 5 |
+
"id": "0a627a6f",
|
| 6 |
"metadata": {},
|
| 7 |
"source": [
|
| 8 |
"<a href=\"https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
|
|
|
| 51 |
"from audiodiffusion import AudioDiffusion"
|
| 52 |
]
|
| 53 |
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "markdown",
|
| 56 |
+
"id": "7fd945bb",
|
| 57 |
+
"metadata": {},
|
| 58 |
+
"source": [
|
| 59 |
+
"### Select model"
|
| 60 |
+
]
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"cell_type": "code",
|
| 64 |
+
"execution_count": null,
|
| 65 |
+
"id": "97f24046",
|
| 66 |
+
"metadata": {},
|
| 67 |
+
"outputs": [],
|
| 68 |
+
"source": [
|
| 69 |
+
"#@markdown teticio/audio-diffusion-256 - trained on my Spotify \"liked\" playlist\n",
|
| 70 |
+
"#@markdown teticio/audio-diffusion-256-breaks - trained on samples used in music\n",
|
| 71 |
+
"model_id = \"teticio/audio-diffusion-256\" #@param [\"teticio/audio-diffusion-256\", \"teticio/audio-diffusion-256-breaks\"]"
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
{
|
| 75 |
"cell_type": "markdown",
|
| 76 |
"id": "011fb5a1",
|
|
|
|
| 81 |
},
|
| 82 |
{
|
| 83 |
"cell_type": "code",
|
| 84 |
+
"execution_count": 4,
|
| 85 |
"id": "a3d45c36",
|
| 86 |
"metadata": {},
|
| 87 |
"outputs": [],
|
| 88 |
"source": [
|
| 89 |
+
"audio_diffusion = AudioDiffusion(model_id=model_id)"
|
| 90 |
]
|
| 91 |
},
|
| 92 |
{
|
|
|
|
| 132 |
"metadata": {},
|
| 133 |
"outputs": [],
|
| 134 |
"source": [
|
| 135 |
+
"ds = load_dataset(model_id)"
|
| 136 |
]
|
| 137 |
},
|
| 138 |
{
|
|
|
|
| 188 |
"Audio(data=audio, rate=mel.get_sample_rate())"
|
| 189 |
]
|
| 190 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
{
|
| 192 |
"cell_type": "code",
|
| 193 |
"execution_count": null,
|
notebooks/test_model_breaks.ipynb
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|