Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
-
from
|
|
|
5 |
|
6 |
model_id = "textcleanlm/textclean-4B"
|
7 |
model = None
|
@@ -37,19 +38,32 @@ def load_model():
|
|
37 |
def clean_text(text):
|
38 |
model, tokenizer = load_model()
|
39 |
|
40 |
-
inputs = tokenizer(text, return_tensors="pt", max_length=
|
41 |
inputs = {k: v.cuda() for k, v in inputs.items()}
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
**inputs,
|
46 |
-
max_length=512,
|
47 |
-
num_beams=4,
|
48 |
-
early_stopping=True
|
49 |
-
)
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
iface = gr.Interface(
|
55 |
fn=clean_text,
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
+
from threading import Thread
|
5 |
+
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM, TextIteratorStreamer
|
6 |
|
7 |
model_id = "textcleanlm/textclean-4B"
|
8 |
model = None
|
|
|
38 |
def clean_text(text):
|
39 |
model, tokenizer = load_model()
|
40 |
|
41 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=4096, truncation=True)
|
42 |
inputs = {k: v.cuda() for k, v in inputs.items()}
|
43 |
|
44 |
+
# Enable streaming
|
45 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
generation_kwargs = dict(
|
48 |
+
**inputs,
|
49 |
+
max_length=4096,
|
50 |
+
num_beams=1, # Set to 1 for streaming
|
51 |
+
do_sample=True,
|
52 |
+
temperature=1.0,
|
53 |
+
streamer=streamer,
|
54 |
+
)
|
55 |
+
|
56 |
+
# Run generation in a separate thread
|
57 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
58 |
+
thread.start()
|
59 |
+
|
60 |
+
# Yield text as it's generated
|
61 |
+
generated_text = ""
|
62 |
+
for new_text in streamer:
|
63 |
+
generated_text += new_text
|
64 |
+
yield generated_text
|
65 |
+
|
66 |
+
thread.join()
|
67 |
|
68 |
iface = gr.Interface(
|
69 |
fn=clean_text,
|