File size: 2,233 Bytes
f28182b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# -*- coding: utf-8 -*-
"""finito.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1rNnk3xajWzVdyH2eXJ58ghLpk-zejGw-
"""

!pip install -r requirements.txt

!pip install gradio

from langchain.prompts import StringPromptTemplate
import re
import langchain
from qa_txt import conversation_chain
from key_extract import chain
from bs4 import BeautifulSoup
import requests
from data_process import *
from langchain.tools.base import StructuredTool
from langchain.agents import initialize_agent
from qa_txt import llm
import gradio as gr

def faq(query: str) -> str:
    reponse = conversation_chain({"question": query, "chat_history": []})
    return reponse['answer']

qa_faq = StructuredTool.from_function(
    func = faq ,
    description="""
    Repondre à des questions general .

    Parameters :
    - query (string) : the same input as the user input no more no less and dont translate it even if it is in another language.

    Returns :
    - string : the output as returned from the function in french.
    """
)

def request_data(query: str) -> str:
    request = chain.run(query)
    mot_cle = nettoyer_string(request)
    mots = mot_cle.split()
    ui = mots[0]
    rg = chercher_data(ui)
    if len(rg[0]):
      reponse_final = format_reponse(rg)
      return reponse_final
    else:
      return "Désolé, il semble que nous n'ayons pas de données correspondant à votre demande pour le moment. Avez-vous une autre question ou avez-vous besoin d'aide sur quelque chose d'autre?"

fetch_data = StructuredTool.from_function(
    func=request_data,
    description="""
    Rechercher des données.

    Parameters :
    - query (string) : the same input as the user input no more no less and dont translate it even if it is in another language.

    Returns :
    - string : the output as returned from the function in french.
    """,
)

tools_add = [
    qa_faq,
    fetch_data,
]

agent = initialize_agent(
    tools = tools_add,
    llm = llm,
    agent = "zero-shot-react-description",
    verbose = True
)

agent.invoke("bonjour je veux l'addresse de contact. Et donner moi les donnée de la finance")

gr.ChatInterface(agent.invoke).launch()