Spaces:
Sleeping
Sleeping
File size: 5,120 Bytes
c4d1b84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# -*- coding: utf-8 -*-
"""api.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1XRryfVWG4d_ScN5ADvlZpKmREvTJN3mg
"""
import gradio as gr
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from pathlib import Path
import chromadb
from unidecode import unidecode
from transformers import AutoTokenizer
import transformers
import torch
import tqdm
import accelerate
def load_doc(file_path):
loader = PyPDFLoader(file_path)
pages = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
!pip install fpdf
splt = load_doc('data.pdf')
def initialize_database(file_path):
# Create list of documents (when valid)
collection_name = Path(file_path).stem
# Fix potential issues from naming convention
## Remove space
collection_name = collection_name.replace(" ","-")
## Limit lenght to 50 characters
collection_name = collection_name[:50]
## Enforce start and end as alphanumeric character
if not collection_name[0].isalnum():
collection_name[0] = 'A'
if not collection_name[-1].isalnum():
collection_name[-1] = 'Z'
# print('list_file_path: ', list_file_path)
print('Collection name: ', collection_name)
# Load document and create splits
doc_splits = load_doc(file_path)
# Create or load vector database
# global vector_db
vector_db = create_db(doc_splits, collection_name)
return vector_db, collection_name, "Complete!"
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
# persist_directory=default_persist_directory
)
return vectordb
vec = initialize_database('data.pdf')
vec_cre = create_db(splt, 'data')
vec_cre
vec
def initialize_llmchain(temperature, max_tokens, top_k, vector_db):
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
llm = HuggingFaceEndpoint(
repo_id='mistralai/Mixtral-8x7B-Instruct-v0.1',
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True},
temperature = temperature,
max_new_tokens = max_tokens,
top_k = top_k,
load_in_8bit = True
)
retriever=vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
# combine_docs_chain_kwargs={"prompt": your_prompt})
return_source_documents=True,
#return_generated_question=False,
verbose=False,
)
return qa_chain
qa = initialize_llmchain(0.7, 1024, 1, vec_cre)
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(message, history):
formatted_chat_history = format_chat_history(message, history)
#print("formatted_chat_history",formatted_chat_history)
# Generate response using QA chain
response = qa({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
# Langchain sources are zero-based
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
# print ('chat response: ', response_answer)
# print('DB source', response_sources)
# Append user message and response to chat history
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
return response_answer
conversation("what is dat gov ma", "")
gr.ChatInterface(conversation).launch() |