Spaces:
Sleeping
Sleeping
Ferhan taha
commited on
Delete app.py
Browse files
app.py
DELETED
@@ -1,134 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""app.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/14JJlKx1Oj4px4gdVwHn55FstUl2Dvh9z
|
8 |
-
"""
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
#|export
|
13 |
-
import os
|
14 |
-
|
15 |
-
from langchain.document_loaders import PyPDFLoader
|
16 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
17 |
-
from langchain.vectorstores import Chroma
|
18 |
-
from langchain.chains import ConversationalRetrievalChain
|
19 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
20 |
-
from langchain.llms import HuggingFacePipeline
|
21 |
-
from langchain.chains import ConversationChain
|
22 |
-
from langchain.memory import ConversationBufferMemory
|
23 |
-
from langchain.llms import HuggingFaceHub
|
24 |
-
import pandas as pd
|
25 |
-
from pathlib import Path
|
26 |
-
import chromadb
|
27 |
-
import gradio as gr
|
28 |
-
from transformers import AutoTokenizer
|
29 |
-
import transformers
|
30 |
-
import torch
|
31 |
-
import tqdm
|
32 |
-
import accelerate
|
33 |
-
|
34 |
-
#|export
|
35 |
-
def initialize_database(file_path):
|
36 |
-
# Create list of documents (when valid)
|
37 |
-
collection_name = Path(file_path).stem
|
38 |
-
# Fix potential issues from naming convention
|
39 |
-
## Remove space
|
40 |
-
collection_name = collection_name.replace(" ","-")
|
41 |
-
## Limit lenght to 50 characters
|
42 |
-
collection_name = collection_name[:50]
|
43 |
-
## Enforce start and end as alphanumeric character
|
44 |
-
if not collection_name[0].isalnum():
|
45 |
-
collection_name[0] = 'A'
|
46 |
-
if not collection_name[-1].isalnum():
|
47 |
-
collection_name[-1] = 'Z'
|
48 |
-
# print('list_file_path: ', list_file_path)
|
49 |
-
print('Collection name: ', collection_name)
|
50 |
-
# Load document and create splits
|
51 |
-
doc_splits = load_doc(file_path)
|
52 |
-
# Create or load vector database
|
53 |
-
# global vector_db
|
54 |
-
vector_db = create_db(doc_splits, collection_name)
|
55 |
-
return vector_db, collection_name, "Complete!"
|
56 |
-
|
57 |
-
#|export
|
58 |
-
def load_doc(file_path):
|
59 |
-
loader = PyPDFLoader(file_path)
|
60 |
-
pages = loader.load()
|
61 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
62 |
-
doc_splits = text_splitter.split_documents(pages)
|
63 |
-
return doc_splits
|
64 |
-
|
65 |
-
#|export
|
66 |
-
def create_db(splits, collection_name):
|
67 |
-
embedding = HuggingFaceEmbeddings()
|
68 |
-
new_client = chromadb.EphemeralClient()
|
69 |
-
vectordb = Chroma.from_documents(
|
70 |
-
documents=splits,
|
71 |
-
embedding=embedding,
|
72 |
-
client=new_client,
|
73 |
-
collection_name=collection_name,
|
74 |
-
# persist_directory=default_persist_directory
|
75 |
-
)
|
76 |
-
return vectordb
|
77 |
-
|
78 |
-
#|export
|
79 |
-
splt = load_doc('data.pdf')
|
80 |
-
|
81 |
-
#|export
|
82 |
-
vec = initialize_database('data.pdf')
|
83 |
-
|
84 |
-
#|export
|
85 |
-
vec_cre = create_db(splt, 'data')
|
86 |
-
vec_cre
|
87 |
-
|
88 |
-
#|export
|
89 |
-
def initialize_llmchain(temperature, max_tokens, top_k, vector_db):
|
90 |
-
memory = ConversationBufferMemory(
|
91 |
-
memory_key="chat_history",
|
92 |
-
output_key='answer',
|
93 |
-
return_messages=True
|
94 |
-
)
|
95 |
-
|
96 |
-
llm = HuggingFaceHub(
|
97 |
-
repo_id='mistralai/Mixtral-8x7B-Instruct-v0.1',
|
98 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
99 |
-
)
|
100 |
-
retriever=vector_db.as_retriever()
|
101 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
102 |
-
llm,
|
103 |
-
retriever=retriever,
|
104 |
-
chain_type="stuff",
|
105 |
-
memory=memory,
|
106 |
-
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
107 |
-
return_source_documents=True,
|
108 |
-
#return_generated_question=False,
|
109 |
-
verbose=False,
|
110 |
-
)
|
111 |
-
return qa_chain
|
112 |
-
|
113 |
-
#|export
|
114 |
-
qa = initialize_llmchain(0.7, 1024, 1, vec_cre)
|
115 |
-
|
116 |
-
#|export
|
117 |
-
def format_chat_history(message, chat_history):
|
118 |
-
formatted_chat_history = []
|
119 |
-
for user_message, bot_message in chat_history:
|
120 |
-
formatted_chat_history.append(f"User: {user_message}")
|
121 |
-
formatted_chat_history.append(f"Assistant: {bot_message}")
|
122 |
-
return formatted_chat_history
|
123 |
-
|
124 |
-
#|export
|
125 |
-
def conversation(message, history):
|
126 |
-
formatted_chat_history = format_chat_history(message, history)
|
127 |
-
response = qa({"question": message, "chat_history": formatted_chat_history})
|
128 |
-
response_answer = response["answer"]
|
129 |
-
if response_answer.find("Helpful Answer:") != -1:
|
130 |
-
response_answer = response_answer.split("Helpful Answer:")[-1]
|
131 |
-
return response_answer
|
132 |
-
|
133 |
-
#|export
|
134 |
-
gr.ChatInterface(conversation).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|