Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,3 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""api.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1XRryfVWG4d_ScN5ADvlZpKmREvTJN3mg
|
8 |
-
"""
|
9 |
-
|
10 |
import gradio as gr
|
11 |
import os
|
12 |
|
@@ -58,7 +49,6 @@ def initialize_database(file_path):
|
|
58 |
print('Collection name: ', collection_name)
|
59 |
# Load document and create splits
|
60 |
doc_splits = load_doc(file_path)
|
61 |
-
# Create or load vector database
|
62 |
# global vector_db
|
63 |
vector_db = create_db(doc_splits, collection_name)
|
64 |
return vector_db, collection_name, "Complete!"
|
@@ -71,7 +61,6 @@ def create_db(splits, collection_name):
|
|
71 |
embedding=embedding,
|
72 |
client=new_client,
|
73 |
collection_name=collection_name,
|
74 |
-
# persist_directory=default_persist_directory
|
75 |
)
|
76 |
return vectordb
|
77 |
|
@@ -89,7 +78,6 @@ def initialize_llmchain(temperature, max_tokens, top_k, vector_db):
|
|
89 |
|
90 |
llm = HuggingFaceEndpoint(
|
91 |
repo_id='mistralai/Mixtral-8x7B-Instruct-v0.1',
|
92 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True},
|
93 |
temperature = temperature,
|
94 |
max_new_tokens = max_tokens,
|
95 |
top_k = top_k,
|
@@ -101,14 +89,12 @@ def initialize_llmchain(temperature, max_tokens, top_k, vector_db):
|
|
101 |
retriever=retriever,
|
102 |
chain_type="stuff",
|
103 |
memory=memory,
|
104 |
-
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
105 |
return_source_documents=True,
|
106 |
-
#return_generated_question=False,
|
107 |
verbose=False,
|
108 |
)
|
109 |
return qa_chain
|
110 |
|
111 |
-
qa = initialize_llmchain(0.7, 1024, 1, vec_cre)
|
112 |
|
113 |
def format_chat_history(message, chat_history):
|
114 |
formatted_chat_history = []
|
@@ -119,26 +105,21 @@ def format_chat_history(message, chat_history):
|
|
119 |
|
120 |
def conversation(message, history):
|
121 |
formatted_chat_history = format_chat_history(message, history)
|
122 |
-
#print("formatted_chat_history",formatted_chat_history)
|
123 |
|
124 |
# Generate response using QA chain
|
125 |
response = qa({"question": message, "chat_history": formatted_chat_history})
|
126 |
response_answer = response["answer"]
|
127 |
if response_answer.find("Helpful Answer:") != -1:
|
128 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
|
|
129 |
response_sources = response["source_documents"]
|
130 |
response_source1 = response_sources[0].page_content.strip()
|
131 |
response_source2 = response_sources[1].page_content.strip()
|
132 |
response_source3 = response_sources[2].page_content.strip()
|
133 |
-
# Langchain sources are zero-based
|
134 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
135 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
136 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
137 |
-
# print ('chat response: ', response_answer)
|
138 |
-
# print('DB source', response_sources)
|
139 |
|
140 |
-
# Append user message and response to chat history
|
141 |
-
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
142 |
return response_answer
|
143 |
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
|
|
|
49 |
print('Collection name: ', collection_name)
|
50 |
# Load document and create splits
|
51 |
doc_splits = load_doc(file_path)
|
|
|
52 |
# global vector_db
|
53 |
vector_db = create_db(doc_splits, collection_name)
|
54 |
return vector_db, collection_name, "Complete!"
|
|
|
61 |
embedding=embedding,
|
62 |
client=new_client,
|
63 |
collection_name=collection_name,
|
|
|
64 |
)
|
65 |
return vectordb
|
66 |
|
|
|
78 |
|
79 |
llm = HuggingFaceEndpoint(
|
80 |
repo_id='mistralai/Mixtral-8x7B-Instruct-v0.1',
|
|
|
81 |
temperature = temperature,
|
82 |
max_new_tokens = max_tokens,
|
83 |
top_k = top_k,
|
|
|
89 |
retriever=retriever,
|
90 |
chain_type="stuff",
|
91 |
memory=memory,
|
|
|
92 |
return_source_documents=True,
|
|
|
93 |
verbose=False,
|
94 |
)
|
95 |
return qa_chain
|
96 |
|
97 |
+
qa = initialize_llmchain(0.7, 1024, 1, vec_cre) #The model question answer
|
98 |
|
99 |
def format_chat_history(message, chat_history):
|
100 |
formatted_chat_history = []
|
|
|
105 |
|
106 |
def conversation(message, history):
|
107 |
formatted_chat_history = format_chat_history(message, history)
|
|
|
108 |
|
109 |
# Generate response using QA chain
|
110 |
response = qa({"question": message, "chat_history": formatted_chat_history})
|
111 |
response_answer = response["answer"]
|
112 |
if response_answer.find("Helpful Answer:") != -1:
|
113 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
114 |
+
#You can also return from where the model got the answer to fine-tune or adjust your model mais ici c'est bon
|
115 |
response_sources = response["source_documents"]
|
116 |
response_source1 = response_sources[0].page_content.strip()
|
117 |
response_source2 = response_sources[1].page_content.strip()
|
118 |
response_source3 = response_sources[2].page_content.strip()
|
|
|
119 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
120 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
121 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
|
|
|
|
122 |
|
|
|
|
|
123 |
return response_answer
|
124 |
|
125 |
|