Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,137 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
-
|
4 |
-
from langchain_community.document_loaders import PyPDFLoader
|
5 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain_community.vectorstores import Chroma
|
7 |
-
from langchain.chains import ConversationalRetrievalChain
|
8 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
-
from langchain_community.llms import HuggingFacePipeline
|
10 |
-
from langchain.chains import ConversationChain
|
11 |
-
from langchain.memory import ConversationBufferMemory
|
12 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
13 |
-
|
14 |
-
from pathlib import Path
|
15 |
-
import chromadb
|
16 |
-
from unidecode import unidecode
|
17 |
-
|
18 |
-
from transformers import AutoTokenizer
|
19 |
-
from transformers import pipeline
|
20 |
-
import transformers
|
21 |
-
import torch
|
22 |
-
import tqdm
|
23 |
-
import accelerate
|
24 |
-
|
25 |
-
def load_doc(file_path):
|
26 |
-
loader = PyPDFLoader(file_path)
|
27 |
-
pages = loader.load()
|
28 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1024, chunk_overlap = 120)
|
29 |
-
doc_splits = text_splitter.split_documents(pages)
|
30 |
-
return doc_splits
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
splt = load_doc('data.pdf')
|
35 |
-
|
36 |
-
def initialize_database(file_path):
|
37 |
-
# Create list of documents (when valid)
|
38 |
-
collection_name = Path(file_path).stem
|
39 |
-
# Fix potential issues from naming convention
|
40 |
-
## Remove space
|
41 |
-
collection_name = collection_name.replace(" ","-")
|
42 |
-
## Limit lenght to 50 characters
|
43 |
-
collection_name = collection_name[:50]
|
44 |
-
## Enforce start and end as alphanumeric character
|
45 |
-
if not collection_name[0].isalnum():
|
46 |
-
collection_name[0] = 'A'
|
47 |
-
if not collection_name[-1].isalnum():
|
48 |
-
collection_name[-1] = 'Z'
|
49 |
-
# print('list_file_path: ', list_file_path)
|
50 |
-
print('Collection name: ', collection_name)
|
51 |
-
# Load document and create splits
|
52 |
-
doc_splits = load_doc(file_path)
|
53 |
-
# global vector_db
|
54 |
-
vector_db = create_db(doc_splits, collection_name)
|
55 |
-
return vector_db, collection_name, "Complete!"
|
56 |
-
|
57 |
-
def create_db(splits, collection_name):
|
58 |
-
embedding = HuggingFaceEmbeddings()
|
59 |
-
new_client = chromadb.EphemeralClient()
|
60 |
-
vectordb = Chroma.from_documents(
|
61 |
-
documents=splits,
|
62 |
-
embedding=embedding,
|
63 |
-
client=new_client,
|
64 |
-
collection_name=collection_name,
|
65 |
-
)
|
66 |
-
return vectordb
|
67 |
-
|
68 |
-
vec = initialize_database('data.pdf')
|
69 |
-
|
70 |
-
vec_cre = create_db(splt, 'data')
|
71 |
-
|
72 |
-
|
73 |
-
def initialize_llmchain(temperature, max_tokens, top_k, vector_db):
|
74 |
-
#Use memory if you want for the chatbot to be conversational, in this case it is just for answering from the document
|
75 |
-
# memory = ConversationBufferMemory(
|
76 |
-
# memory_key="chat_history",
|
77 |
-
# output_key='answer',
|
78 |
-
# return_messages=True
|
79 |
-
# )
|
80 |
-
|
81 |
-
llm = HuggingFaceEndpoint(
|
82 |
-
repo_id='mistralai/Mixtral-8x7B-Instruct-v0.1',
|
83 |
-
temperature = temperature,
|
84 |
-
max_new_tokens = max_tokens,
|
85 |
-
top_k = top_k,
|
86 |
-
load_in_8bit = True
|
87 |
-
)
|
88 |
-
retriever=vector_db.as_retriever()
|
89 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
90 |
-
llm,
|
91 |
-
retriever=retriever,
|
92 |
-
chain_type="stuff",
|
93 |
-
#memory=memory,
|
94 |
-
return_source_documents=True,
|
95 |
-
verbose=False,
|
96 |
-
)
|
97 |
-
return qa_chain
|
98 |
-
|
99 |
-
qa = initialize_llmchain(0.6, 1024, 40, vec_cre) #The model question answer
|
100 |
-
|
101 |
-
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr") # This pipeline translate english to french , it isn't adviced as it add more latency
|
102 |
-
|
103 |
-
|
104 |
-
# def format_chat_history(message, chat_history):
|
105 |
-
# formatted_chat_history = []
|
106 |
-
# for user_message, bot_message in chat_history:
|
107 |
-
# formatted_chat_history.append(f"User: {user_message}")
|
108 |
-
# formatted_chat_history.append(f"Assistant: {bot_message}")
|
109 |
-
# return formatted_chat_history
|
110 |
-
|
111 |
-
def conversation(message, history):
|
112 |
-
#formatted_chat_history = format_chat_history(message, history)
|
113 |
-
|
114 |
-
# Generate response using QA chain
|
115 |
-
response = qa({"question": message + " According to the document", "chat_history": []})
|
116 |
-
response_answer = response["answer"]
|
117 |
-
if response_answer.find("Helpful Answer:") != -1:
|
118 |
-
response_answer = response_answer.split("Helpful Answer:")[-1]
|
119 |
-
#You can also return from where the model got the answer to fine-tune or adjust your model mais ici c'est bon
|
120 |
-
response_sources = response["source_documents"]
|
121 |
-
response_source1 = response_sources[0].page_content.strip()
|
122 |
-
response_source2 = response_sources[1].page_content.strip()
|
123 |
-
response_source3 = response_sources[2].page_content.strip()
|
124 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
125 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
126 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
127 |
-
#If you want the return in english leave it at :
|
128 |
-
return response_answer
|
129 |
-
|
130 |
-
#If you want the return in french
|
131 |
-
#return pipe(response_answer)[0]['translation_text'] + " (Traduis d'anglais en français)"
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
gr.ChatInterface(conversation).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|