import gradio as gr import os from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFacePipeline from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory from langchain_community.llms import HuggingFaceEndpoint from pathlib import Path import chromadb from unidecode import unidecode from transformers import AutoTokenizer from transformers import pipeline import transformers import torch import tqdm import accelerate def load_doc(file_path): loader = PyPDFLoader(file_path) pages = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1024, chunk_overlap = 128) doc_splits = text_splitter.split_documents(pages) return doc_splits splt = load_doc('data.pdf') def initialize_database(file_path): # Create list of documents (when valid) collection_name = Path(file_path).stem # Fix potential issues from naming convention ## Remove space collection_name = collection_name.replace(" ","-") ## Limit lenght to 50 characters collection_name = collection_name[:50] ## Enforce start and end as alphanumeric character if not collection_name[0].isalnum(): collection_name[0] = 'A' if not collection_name[-1].isalnum(): collection_name[-1] = 'Z' # print('list_file_path: ', list_file_path) print('Collection name: ', collection_name) # Load document and create splits doc_splits = load_doc(file_path) # global vector_db vector_db = create_db(doc_splits, collection_name) return vector_db, collection_name, "Complete!" def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name, ) return vectordb vec = initialize_database('data.pdf') vec_cre = create_db(splt, 'data') def initialize_llmchain(temperature, max_tokens, top_k, vector_db): #Use memory if you want for the chatbot to be conversational, in this case it is just for answering from the document # memory = ConversationBufferMemory( # memory_key="chat_history", # output_key='answer', # return_messages=True # ) llm = HuggingFaceEndpoint( repo_id='mistralai/Mixtral-8x7B-Instruct-v0.1', temperature = temperature, max_new_tokens = max_tokens, top_k = top_k, load_in_8bit = True ) retriever=vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", #memory=memory, return_source_documents=True, verbose=False, ) return qa_chain qa = initialize_llmchain(0.6, 1024, 40, vec_cre) #The model question answer pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr") # This pipeline translate english to french , it isn't adviced as it add more latency # def format_chat_history(message, chat_history): # formatted_chat_history = [] # for user_message, bot_message in chat_history: # formatted_chat_history.append(f"User: {user_message}") # formatted_chat_history.append(f"Assistant: {bot_message}") # return formatted_chat_history def conversation(message, history): #formatted_chat_history = format_chat_history(message, history) # Generate response using QA chain response = qa({"question": message + " According to the document", "chat_history": []}) response_answer = response["answer"] if response_answer.find("Helpful Answer:") != -1: response_answer = response_answer.split("Helpful Answer:")[-1] #You can also return from where the model got the answer to fine-tune or adjust your model mais ici c'est bon response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 #If you want the return in english leave it at : return response_answer #If you want the return in french #return pipe(response_answer)[0]['translation_text'] + " (Traduis d'anglais en français)" gr.ChatInterface(conversation).launch()