Spaces:
Running
Running
File size: 34,404 Bytes
6eb199d d82d422 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d 619e0de 6eb199d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from huggingface_hub import hf_hub_download
import gradio as gr
import requests
import re
from urllib.parse import urlparse
from bs4 import BeautifulSoup
import time
import joblib
# --- import your architecture ---
# Make sure this file is in the repo (e.g., models/deberta_lstm_classifier.py)
# and update the import path accordingly.
from model import DeBERTaLSTMClassifier # <-- your class
# --------- Config ----------
REPO_ID = "khoa-done/phishing-detector" # HF repo that holds the checkpoint
CKPT_NAME = "deberta_lstm_checkpoint.pt" # the .pt file name
MODEL_NAME = "microsoft/deberta-base" # base tokenizer/backbone
LABELS = ["benign", "phishing"] # adjust to your classes
# If your checkpoint contains hyperparams, you can fetch them like:
# checkpoint.get("config") or checkpoint.get("model_args")
# and pass into DeBERTaLSTMClassifier(**model_args)
# --------- Load model/tokenizer once (global) ----------
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=CKPT_NAME)
checkpoint = torch.load(ckpt_path, map_location=device)
# If you saved hyperparams in the checkpoint, use them:
model_args = checkpoint.get("model_args", {}) # e.g., {"lstm_hidden":256, "num_labels":2, ...}
model = DeBERTaLSTMClassifier(**model_args)
# Load state dict and handle missing attention layer for older models
try:
model.load_state_dict(checkpoint["model_state_dict"])
except RuntimeError as e:
if "attention" in str(e):
# Old model without attention layer - initialize attention layer and load partial state
state_dict = checkpoint["model_state_dict"]
model_dict = model.state_dict()
# Filter out attention layer parameters
filtered_dict = {k: v for k, v in state_dict.items() if "attention" not in k}
model_dict.update(filtered_dict)
model.load_state_dict(model_dict)
print("Loaded model without attention layer, using newly initialized attention weights")
else:
raise e
model.to(device).eval()
# --------- Load BERT model/tokenizer from Hugging Face Hub ----------
BERT_MODEL_PATH = "th1enq/bert_checkpoint" # Use Hugging Face Hub model
bert_tokenizer = AutoTokenizer.from_pretrained(BERT_MODEL_PATH)
bert_model = AutoModelForSequenceClassification.from_pretrained(BERT_MODEL_PATH)
bert_model.to(device).eval()
# --------- Helper functions ----------
def is_url(text):
"""Check if text is a URL"""
url_pattern = re.compile(
r'^https?://' # http:// or https://
r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+[A-Z]{2,6}\.?|' # domain...
r'localhost|' # localhost...
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip
r'(?::\d+)?' # optional port
r'(?:/?|[/?]\S+)$', re.IGNORECASE)
return url_pattern.match(text) is not None
def fetch_html_content(url, timeout=10):
"""Fetch HTML content from URL"""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers=headers, timeout=timeout, verify=False)
response.raise_for_status()
return response.text, response.status_code
except requests.exceptions.RequestException as e:
return None, f"Request error: {str(e)}"
except Exception as e:
return None, f"General error: {str(e)}"
def predict_single_text(text, text_type="text"):
"""Predict for a single text input"""
# Tokenize
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=256
)
# DeBERTa typically doesn't use token_type_ids
inputs.pop("token_type_ids", None)
# Move to device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
try:
# Try to get predictions with attention weights
result = model(**inputs, return_attention=True)
if isinstance(result, tuple) and len(result) == 3:
logits, attention_weights, deberta_attentions = result
has_attention = True
else:
logits = result
has_attention = False
except TypeError:
# Fallback for older model without return_attention parameter
logits = model(**inputs)
has_attention = False
probs = F.softmax(logits, dim=-1).squeeze(0).tolist()
# Get tokens for visualization
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze(0).tolist())
return probs, tokens, has_attention, attention_weights if has_attention else None
def combine_predictions(url_probs, html_probs, url_weight=0.3, html_weight=0.7):
"""Combine URL and HTML content predictions"""
combined_probs = [
url_weight * url_probs[0] + html_weight * html_probs[0], # benign
url_weight * url_probs[1] + html_weight * html_probs[1] # phishing
]
return combined_probs
# --------- Inference function ----------
def predict_fn(text: str):
if not text or not text.strip():
return {"error": "Please enter a URL or text."}, ""
# Check if input is URL
if is_url(text.strip()):
# Process URL
url = text.strip()
# Get prediction for URL itself
url_probs, url_tokens, url_has_attention, url_attention = predict_single_text(url, "URL")
# Try to fetch HTML content
html_content, status = fetch_html_content(url)
if html_content:
# Get prediction for HTML content
html_probs, html_tokens, html_has_attention, html_attention = predict_single_text(html_content, "HTML")
# Combine predictions
combined_probs = combine_predictions(url_probs, html_probs)
# Use combined probabilities but show analysis for both
probs = combined_probs
tokens = url_tokens + ["[SEP]"] + html_tokens[:50] # Limit HTML tokens for display
has_attention = url_has_attention or html_has_attention
attention_weights = url_attention if url_has_attention else html_attention
analysis_type = "Combined URL + HTML Analysis"
fetch_status = f"β
Successfully fetched HTML content (Status: {status})"
else:
# Fallback to URL-only analysis
probs = url_probs
tokens = url_tokens
has_attention = url_has_attention
attention_weights = url_attention
analysis_type = "URL-only Analysis"
fetch_status = f"β οΈ Could not fetch HTML content: {status}"
else:
# Process as regular text
probs, tokens, has_attention, attention_weights = predict_single_text(text, "text")
analysis_type = "Text Analysis"
fetch_status = ""
# Get tokens for visualization
# Create detailed analysis
predicted_class = "phishing" if probs[1] > probs[0] else "benign"
confidence = max(probs)
detailed_analysis = f"""
<div style="font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; background: #1e1e1e; padding: 20px; border-radius: 15px;">
<div style="background: linear-gradient(135deg, {'#8b0000' if predicted_class == 'phishing' else '#006400'} 0%, {'#dc143c' if predicted_class == 'phishing' else '#228b22'} 100%); padding: 25px; border-radius: 20px; color: white; text-align: center; margin-bottom: 20px; box-shadow: 0 8px 32px rgba(0,0,0,0.5); border: 2px solid {'#ff4444' if predicted_class == 'phishing' else '#44ff44'};">
<h2 style="margin: 0 0 10px 0; font-size: 28px; color: white;">π {analysis_type}</h2>
<div style="font-size: 36px; font-weight: bold; margin: 10px 0; color: white;">
{predicted_class.upper()}
</div>
<div style="font-size: 18px; color: #f0f0f0;">
Confidence: {confidence:.1%}
</div>
<div style="margin-top: 15px; font-size: 14px; color: #e0e0e0;">
{'This appears to be a phishing attempt!' if predicted_class == 'phishing' else 'β
This appears to be legitimate content.'}
</div>
</div>
"""
if fetch_status:
detailed_analysis += f"""
<div style="background: #2d2d2d; padding: 15px; border-radius: 10px; margin: 15px 0; border-left: 4px solid #4caf50; color: #e0e0e0;">
<strong>Fetch Status:</strong> {fetch_status}
</div>
"""
if has_attention and attention_weights is not None:
attention_scores = attention_weights.squeeze(0).tolist()
token_analysis = []
for i, (token, score) in enumerate(zip(tokens, attention_scores)):
# More lenient filtering - include more tokens for text analysis
if token not in ['[CLS]', '[SEP]', '[PAD]', '<s>', '</s>'] and len(token.strip()) > 0 and score > 0.005:
clean_token = token.replace('β', '').replace('Δ ', '').strip() # Handle different tokenizer prefixes
if clean_token: # Only add if token has content after cleaning
token_analysis.append({
'token': clean_token,
'importance': score,
'position': i
})
# Sort by importance
token_analysis.sort(key=lambda x: x['importance'], reverse=True)
detailed_analysis += f"""
## Top important tokens:
<div style="background: #2d2d2d; padding: 15px; border-radius: 10px; margin: 15px 0; border-left: 4px solid #4caf50; color: #e0e0e0;">
<strong>Analysis Info:</strong> Found {len(token_analysis)} important tokens out of {len(tokens)} total tokens
</div>
<div style="font-family: Arial, sans-serif;">
"""
for i, token_info in enumerate(token_analysis[:10]): # Top 10 tokens
bar_width = int(token_info['importance'] * 100)
color = "#ff4444" if predicted_class == "phishing" else "#44ff44"
detailed_analysis += f"""
<div style="margin: 8px 0; display: flex; align-items: center; background: #2d2d2d; padding: 8px; border-radius: 8px; border-left: 4px solid {color};">
<div style="width: 30px; text-align: right; margin-right: 10px; font-weight: bold; color: #ffffff;">
{i+1}.
</div>
<div style="width: 120px; margin-right: 10px; font-weight: bold; color: #e0e0e0; text-align: right;">
{token_info['token']}
</div>
<div style="width: 300px; background-color: #404040; border-radius: 10px; overflow: hidden; margin-right: 10px; border: 1px solid #555;">
<div style="width: {bar_width}%; background-color: {color}; height: 20px; border-radius: 10px; transition: width 0.3s ease;"></div>
</div>
<div style="color: #cccccc; font-size: 12px; font-weight: bold;">
{token_info['importance']:.1%}
</div>
</div>
"""
detailed_analysis += "</div>\n"
detailed_analysis += f"""
## Detailed analysis:
<div style="font-family: Arial, sans-serif; background: linear-gradient(135deg, #1a237e 0%, #3949ab 100%); padding: 20px; border-radius: 15px; color: white; margin: 15px 0; border: 2px solid #3f51b5;">
<h3 style="margin: 0 0 15px 0; color: white;">Statistical Overview</h3>
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px;">
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{len([t for t in tokens if t not in ['[CLS]', '[SEP]', '[PAD]']])}</div>
<div style="font-size: 14px; color: #e0e0e0;">Total tokens</div>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold, color: white;">{len([t for t in token_analysis if t['importance'] > 0.05])}</div>
<div style="font-size: 14px, color: #e0e0e0;">High impact tokens (>5%)</div>
</div>
</div>
</div>
<div style="font-family: Arial, sans-serif; margin: 15px 0; background: #2d2d2d; padding: 20px; border-radius: 15px; border: 1px solid #555;">
<h3 style="color: #ffffff; margin-bottom: 15px;"> Prediction Confidence</h3>
<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">
<span style="font-weight: bold; color: #ff4444;">Phishing</span>
<span style="font-weight: bold; color: #44ff44;">Benign</span>
</div>
<div style="width: 100%; background-color: #404040; border-radius: 25px; overflow: hidden; height: 30px; border: 1px solid #666;">
<div style="width: {probs[1]*100:.1f}%; background: linear-gradient(90deg, #ff4444 0%, #ff6666 100%); height: 100%; display: flex; align-items: center; justify-content: center; color: white; font-weight: bold; font-size: 14px;">
{probs[1]:.1%}
</div>
</div>
<div style="margin-top: 10px; text-align: center; color: #cccccc; font-size: 14px;">
Benign: {probs[0]:.1%}
</div>
</div>
"""
else:
# Fallback analysis without attention weights
detailed_analysis += f"""
<div style="background: linear-gradient(135deg, #1a237e 0%, #3949ab 100%); padding: 20px; border-radius: 15px; color: white; margin: 15px 0; border: 2px solid #3f51b5;">
<h3 style="margin: 0 0 15px 0; color: white;">Basic Analysis</h3>
<div style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 15px;">
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; text-align: center; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{probs[1]:.1%}</div>
<div style="font-size: 14px; color: #e0e0e0;">Phishing</div>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; text-align: center; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{probs[0]:.1%}</div>
<div style="font-size: 14px; color: #e0e0e0;">Benign</div>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; text-align: center; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{len([t for t in tokens if t not in ['[CLS]', '[SEP]', '[PAD]']])}</div>
<div style="font-size: 14px; color: #e0e0e0;">Tokens</div>
</div>
</div>
</div>
<div style="background: #2d2d2d; padding: 20px; border-radius: 15px; margin: 15px 0; border: 1px solid #555;">
<h3 style="color: #ffffff; margin: 0 0 15px 0;">π€ Tokens in text:</h3>
<div style="display: flex; flex-wrap: wrap; gap: 8px;">""" + ''.join([f'<span style="background: #404040; color: #64b5f6; padding: 4px 8px; border-radius: 15px; font-size: 12px; border: 1px solid #666;">{token.replace("β", "")}</span>' for token in tokens if token not in ['[CLS]', '[SEP]', '[PAD]']]) + f"""</div>
<div style="margin-top: 15px; padding: 10px; background: #3d2914; border-radius: 8px; border-left: 4px solid #ff9800;">
<strong style="color: #ffcc02;">Debug info:</strong> <span style="color: #e0e0e0;">Found {len(tokens)} total tokens, {len([t for t in tokens if t not in ['[CLS]', '[SEP]', '[PAD]']])} content tokens</span>
</div>
</div>
<div style="background: #3d2914; padding: 15px; border-radius: 10px; border-left: 4px solid #ff9800; margin: 15px 0;">
<p style="margin: 0; color: #ffcc02; font-size: 14px;">
<strong>Note:</strong> Detailed attention weights analysis is not available for the current model.
</p>
</div>
"""
# Build label->prob mapping for Gradio Label output
if len(LABELS) == len(probs):
prediction_result = {LABELS[i]: float(probs[i]) for i in range(len(LABELS))}
else:
prediction_result = {f"class_{i}": float(p) for i, p in enumerate(probs)}
return prediction_result, detailed_analysis
# --------- BERT Model Functions ----------
def predict_bert_single_text(text, text_type="text"):
"""Predict for a single text input using BERT."""
# Tokenize
inputs = bert_tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=512
)
# Move to device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = bert_model(**inputs, output_attentions=True)
logits = outputs.logits
probs = F.softmax(logits, dim=-1).squeeze(0).tolist()
# Get tokens for visualization
tokens = bert_tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze(0).tolist())
# Get attention weights (use last layer, first head as approximation)
attention_weights = None
has_attention = False
if hasattr(outputs, 'attentions') and outputs.attentions is not None:
# Average attention across all heads in the last layer
last_layer_attention = outputs.attentions[-1] # Last layer
attention_weights = last_layer_attention.mean(dim=1).squeeze(0) # Average across heads
# Use attention to [CLS] token as importance scores
attention_weights = attention_weights[0] # [CLS] token attention to all tokens
has_attention = True
return probs, tokens, has_attention, attention_weights
def predict_bert_interface_fn(text: str):
"""Gradio interface function for BERT model."""
if not text or not text.strip():
return {"error": "Please enter a URL or text."}, ""
# Check if input is URL
if is_url(text.strip()):
# Process URL
url = text.strip()
# Get prediction for URL itself
url_probs, url_tokens, url_has_attention, url_attention = predict_bert_single_text(url, "URL")
# Try to fetch HTML content
html_content, status = fetch_html_content(url)
if html_content:
# Get prediction for HTML content
html_probs, html_tokens, html_has_attention, html_attention = predict_bert_single_text(html_content, "HTML")
# Combine predictions
combined_probs = combine_predictions(url_probs, html_probs)
# Use combined probabilities but show analysis for both
probs = combined_probs
tokens = url_tokens + ["[SEP]"] + html_tokens[:50] # Limit HTML tokens for display
has_attention = url_has_attention or html_has_attention
attention_weights = url_attention if url_has_attention else html_attention
analysis_type = "Combined URL + HTML BERT Analysis"
fetch_status = f"β
Successfully fetched HTML content (Status: {status})"
else:
# Fallback to URL-only analysis
probs = url_probs
tokens = url_tokens
has_attention = url_has_attention
attention_weights = url_attention
analysis_type = "URL-only BERT Analysis"
fetch_status = f"β οΈ Could not fetch HTML content: {status}"
else:
# Process as regular text
probs, tokens, has_attention, attention_weights = predict_bert_single_text(text, "text")
analysis_type = "BERT Text Analysis"
fetch_status = ""
# Create detailed analysis
predicted_class = "phishing" if probs[1] > probs[0] else "benign"
confidence = max(probs)
detailed_analysis = f"""
<div style="font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; background: #1e1e1e; padding: 20px; border-radius: 15px;">
<div style="background: linear-gradient(135deg, {'#8b0000' if predicted_class == 'phishing' else '#006400'} 0%, {'#dc143c' if predicted_class == 'phishing' else '#228b22'} 100%); padding: 25px; border-radius: 20px; color: white; text-align: center; margin-bottom: 20px; box-shadow: 0 8px 32px rgba(0,0,0,0.5); border: 2px solid {'#ff4444' if predicted_class == 'phishing' else '#44ff44'};">
<h2 style="margin: 0 0 10px 0; font-size: 28px; color: white;">π {analysis_type}</h2>
<div style="font-size: 36px; font-weight: bold; margin: 10px 0; color: white;">
{predicted_class.upper()}
</div>
<div style="font-size: 18px; color: #f0f0f0;">
Confidence: {confidence:.1%}
</div>
<div style="margin-top: 15px; font-size: 14px; color: #e0e0e0;">
{'This appears to be a phishing attempt!' if predicted_class == 'phishing' else 'β
This appears to be legitimate content.'}
</div>
</div>
"""
if fetch_status:
detailed_analysis += f"""
<div style="background: #2d2d2d; padding: 15px; border-radius: 10px; margin: 15px 0; border-left: 4px solid #4caf50; color: #e0e0e0;">
<strong>Fetch Status:</strong> {fetch_status}
</div>
"""
if has_attention and attention_weights is not None:
attention_scores = attention_weights.squeeze(0).tolist() if attention_weights.dim() > 1 else attention_weights.tolist()
token_analysis = []
for i, (token, score) in enumerate(zip(tokens, attention_scores)):
# More lenient filtering - include more tokens for text analysis
if token not in ['[CLS]', '[SEP]', '[PAD]', '<s>', '</s>'] and len(token.strip()) > 0 and score > 0.005:
clean_token = token.replace('β', '').replace('Δ ', '').strip() # Handle different tokenizer prefixes
if clean_token: # Only add if token has content after cleaning
token_analysis.append({
'token': clean_token,
'importance': score,
'position': i
})
# Sort by importance
token_analysis.sort(key=lambda x: x['importance'], reverse=True)
detailed_analysis += f"""
## Top important tokens:
<div style="background: #2d2d2d; padding: 15px; border-radius: 10px; margin: 15px 0; border-left: 4px solid #4caf50; color: #e0e0e0;">
<strong>Analysis Info:</strong> Found {len(token_analysis)} important tokens out of {len(tokens)} total tokens
</div>
<div style="font-family: Arial, sans-serif;">
"""
for i, token_info in enumerate(token_analysis[:10]): # Top 10 tokens
bar_width = int(token_info['importance'] * 100)
color = "#ff4444" if predicted_class == "phishing" else "#44ff44"
detailed_analysis += f"""
<div style="margin: 8px 0; display: flex; align-items: center; background: #2d2d2d; padding: 8px; border-radius: 8px; border-left: 4px solid {color};">
<div style="width: 30px; text-align: right; margin-right: 10px; font-weight: bold; color: #ffffff;">
{i+1}.
</div>
<div style="width: 120px; margin-right: 10px; font-weight: bold; color: #e0e0e0; text-align: right;">
{token_info['token']}
</div>
<div style="width: 300px; background-color: #404040; border-radius: 10px; overflow: hidden; margin-right: 10px; border: 1px solid #555;">
<div style="width: {bar_width}%; background-color: {color}; height: 20px; border-radius: 10px; transition: width 0.3s ease;"></div>
</div>
<div style="color: #cccccc; font-size: 12px; font-weight: bold;">
{token_info['importance']:.1%}
</div>
</div>
"""
detailed_analysis += "</div>\n"
detailed_analysis += f"""
## Detailed analysis:
<div style="font-family: Arial, sans-serif; background: linear-gradient(135deg, #1a237e 0%, #3949ab 100%); padding: 20px; border-radius: 15px; color: white; margin: 15px 0; border: 2px solid #3f51b5;">
<h3 style="margin: 0 0 15px 0; color: white;">Statistical Overview</h3>
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px;">
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{len([t for t in tokens if t not in ['[CLS]', '[SEP]', '[PAD]']])}</div>
<div style="font-size: 14px; color: #e0e0e0;">Total tokens</div>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{len([t for t in token_analysis if t['importance'] > 0.05])}</div>
<div style="font-size: 14px; color: #e0e0e0;">High impact tokens (>5%)</div>
</div>
</div>
</div>
<div style="font-family: Arial, sans-serif; margin: 15px 0; background: #2d2d2d; padding: 20px; border-radius: 15px; border: 1px solid #555;">
<h3 style="color: #ffffff; margin-bottom: 15px;"> Prediction Confidence</h3>
<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">
<span style="font-weight: bold; color: #ff4444;">Phishing</span>
<span style="font-weight: bold; color: #44ff44;">Benign</span>
</div>
<div style="width: 100%; background-color: #404040; border-radius: 25px; overflow: hidden; height: 30px; border: 1px solid #666;">
<div style="width: {probs[1]*100:.1f}%; background: linear-gradient(90deg, #ff4444 0%, #ff6666 100%); height: 100%; display: flex; align-items: center; justify-content: center; color: white; font-weight: bold; font-size: 14px;">
{probs[1]:.1%}
</div>
</div>
<div style="margin-top: 10px; text-align: center; color: #cccccc; font-size: 14px;">
Benign: {probs[0]:.1%}
</div>
</div>
"""
else:
# Fallback analysis without attention weights
detailed_analysis += f"""
<div style="background: linear-gradient(135deg, #1a237e 0%, #3949ab 100%); padding: 20px; border-radius: 15px; color: white; margin: 15px 0; border: 2px solid #3f51b5;">
<h3 style="margin: 0 0 15px 0; color: white;">Basic Analysis</h3>
<div style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 15px;">
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; text-align: center; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{probs[1]:.1%}</div>
<div style="font-size: 14px; color: #e0e0e0;">Phishing</div>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; text-align: center; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{probs[0]:.1%}</div>
<div style="font-size: 14px; color: #e0e0e0;">Benign</div>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; text-align: center; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{len([t for t in tokens if t not in ['[CLS]', '[SEP]', '[PAD]']])}</div>
<div style="font-size: 14px; color: #e0e0e0;">Tokens</div>
</div>
</div>
</div>
<div style="background: #2d2d2d; padding: 20px; border-radius: 15px; margin: 15px 0; border: 1px solid #555;">
<h3 style="color: #ffffff; margin: 0 0 15px 0;">π€ Tokens in text:</h3>
<div style="display: flex; flex-wrap: wrap; gap: 8px;">""" + ''.join([f'<span style="background: #404040; color: #64b5f6; padding: 4px 8px; border-radius: 15px; font-size: 12px; border: 1px solid #666;">{token.replace("β", "")}</span>' for token in tokens if token not in ['[CLS]', '[SEP]', '[PAD]']]) + f"""</div>
<div style="margin-top: 15px; padding: 10px; background: #3d2914; border-radius: 8px; border-left: 4px solid #ff9800;">
<strong style="color: #ffcc02;">Debug info:</strong> <span style="color: #e0e0e0;">Found {len(tokens)} total tokens, {len([t for t in tokens if t not in ['[CLS]', '[SEP]', '[PAD]']])} content tokens</span>
</div>
</div>
<div style="background: #3d2914; padding: 15px; border-radius: 10px; border-left: 4px solid #ff9800; margin: 15px 0;">
<p style="margin: 0; color: #ffcc02; font-size: 14px;">
<strong>Note:</strong> Detailed attention weights analysis is not available for the current model.
</p>
</div>
"""
detailed_analysis += "</div>"
# Build label->prob mapping for Gradio Label output
if len(LABELS) == len(probs):
prediction_result = {LABELS[i]: float(probs[i]) for i in range(len(LABELS))}
else:
prediction_result = {f"class_{i}": float(p) for i, p in enumerate(probs)}
return prediction_result, detailed_analysis
# --------- Gradio UI ----------
deberta_interface = gr.Interface(
fn=predict_fn,
inputs=gr.Textbox(label="URL or text", placeholder="Example: http://suspicious-site.example or paste any text"),
outputs=[
gr.Label(label="Prediction result"),
gr.Markdown(label="Detailed token analysis")
],
title="Phishing Detector (DeBERTa + LSTM)",
description="""
Enter a URL or text for analysis.
**Features:**
- **URL Analysis**: For URLs, the system will fetch HTML content and combine both URL and content analysis
- **Combined Prediction**: Uses weighted combination of URL structure and webpage content analysis
- **Visual Analysis**: Predict phishing/benign probability with visual charts
- **Token Importance**: Display the most important tokens in classification
- **Detailed Insights**: Comprehensive analysis of the impact of each token
- **Dark Theme**: Beautiful interface with colorful charts optimized for dark themes
**How it works for URLs:**
1. Analyze the URL structure itself
2. Fetch the webpage HTML content
3. Analyze the webpage content
4. Combine both results for final prediction (30% URL + 70% content)
""",
examples=[
["http://rendmoiunserviceeee.com"],
["https://www.google.com"],
["Dear customer, your account has been suspended. Click here to verify your identity immediately."],
["https://mail-secure-login-verify.example/path?token=suspicious"],
["http://paypaI-security-update.net/login"],
["Your package has been delivered successfully. Thank you for using our service."],
["https://github.com/user/repo"]
],
theme=gr.themes.Soft(),
css="""
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background-color: #1e1e1e !important;
color: #ffffff !important;
}
.dark .gradio-container {
background-color: #1e1e1e !important;
}
/* Dark theme for all components */
.block {
background-color: #2d2d2d !important;
border: 1px solid #444 !important;
}
.gradio-textbox {
background-color: #3d3d3d !important;
color: #ffffff !important;
border: 1px solid #666 !important;
}
.gradio-button {
background-color: #4a4a4a !important;
color: #ffffff !important;
border: 1px solid #666 !important;
}
.gradio-button:hover {
background-color: #5a5a5a !important;
}
"""
)
bert_interface = gr.Interface(
fn=predict_bert_interface_fn,
inputs=gr.Textbox(label="URL or text", placeholder="Example: http://suspicious-site.example or paste any text"),
outputs=[
gr.Label(label="Prediction result"),
gr.Markdown(label="Detailed token analysis")
],
title="Phishing Detector (BERT)",
description="""
Enter a URL or text for analysis using the BERT model.
**Features:**
- **URL Analysis**: For URLs, the system will fetch HTML content and combine both URL and content analysis
- **Combined Prediction**: Uses weighted combination of URL structure and webpage content analysis
- **Visual Analysis**: Predict phishing/benign probability with visual charts
- **Token Importance**: Display the most important tokens in classification using attention weights
- **Detailed Insights**: Comprehensive analysis of the impact of each token
- **Dark Theme**: Beautiful interface with colorful charts optimized for dark themes
**How it works for URLs:**
1. Analyze the URL structure itself
2. Fetch the webpage HTML content
3. Analyze the webpage content
4. Combine both results for final prediction (30% URL + 70% content)
""",
examples=[
["http://rendmoiunserviceeee.com"],
["https://www.google.com"],
["Dear customer, your account has been suspended. Click here to verify your identity immediately."],
["https://mail-secure-login-verify.example/path?token=suspicious"],
["http://paypaI-security-update.net/login"],
["Your package has been delivered successfully. Thank you for using our service."],
["https://github.com/user/repo"]
],
theme=gr.themes.Soft(),
css="""
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background-color: #1e1e1e !important;
color: #ffffff !important;
}
.dark .gradio-container {
background-color: #1e1e1e !important;
}
/* Dark theme for all components */
.block {
background-color: #2d2d2d !important;
border: 1px solid #444 !important;
}
.gradio-textbox {
background-color: #3d3d3d !important;
color: #ffffff !important;
border: 1px solid #666 !important;
}
.gradio-button {
background-color: #4a4a4a !important;
color: #ffffff !important;
border: 1px solid #666 !important;
}
.gradio-button:hover {
background-color: #5a5a5a !important;
}
"""
)
demo = gr.TabbedInterface(
[deberta_interface, bert_interface],
["DeBERTa + LSTM", "BERT"]
)
if __name__ == "__main__":
demo.launch() |