import torch import torch.nn as nn import torch.nn.functional as F from transformers import AutoModel class DeBERTaLSTMClassifier(nn.Module): def __init__(self, hidden_dim=128, num_labels=2): super().__init__() self.deberta = AutoModel.from_pretrained("microsoft/deberta-base") for param in self.deberta.parameters(): param.requires_grad = False # freeze DeBERTa (as we don't have enough resources, we will not train DeBERTa in this model) self.lstm = nn.LSTM( input_size=self.deberta.config.hidden_size, hidden_size=hidden_dim, batch_first=True, bidirectional=True ) self.fc = nn.Linear(hidden_dim * 2, num_labels) # Attention layer để tính token importance self.attention = nn.Linear(hidden_dim * 2, 1) def forward(self, input_ids, attention_mask, return_attention=False): with torch.no_grad(): outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask, output_attentions=True) lstm_out, _ = self.lstm(outputs.last_hidden_state) # shape: [batch, seq_len, hidden*2] if return_attention: # Tính attention weights cho từng token attention_weights = self.attention(lstm_out) # [batch, seq_len, 1] attention_weights = F.softmax(attention_weights.squeeze(-1), dim=-1) # [batch, seq_len] # Apply attention mask attention_weights = attention_weights * attention_mask.float() attention_weights = attention_weights / (attention_weights.sum(dim=-1, keepdim=True) + 1e-8) # Weighted sum of LSTM outputs attended_output = torch.sum(lstm_out * attention_weights.unsqueeze(-1), dim=1) logits = self.fc(attended_output) return logits, attention_weights, outputs.attentions else: final_hidden = lstm_out[:, -1, :] # last token output logits = self.fc(final_hidden) return logits