File size: 11,640 Bytes
9b5ca29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from .prompts_raw import (
    _prompt_code_generation,
    _prompt_fix_error,
    _prompt_visual_fix_error,
    _prompt_scene_plan,
    _prompt_scene_vision_storyboard,
    _prompt_scene_technical_implementation,
    _prompt_scene_animation_narration,
    _prompt_animation_simple,
    _prompt_animation_fix_error,
    _prompt_animation_rag_query_generation,
    _prompt_animation_rag_query_generation_fix_error,
    _banned_reasonings,
    _prompt_context_learning_scene_plan,
    _prompt_context_learning_vision_storyboard,
    _prompt_context_learning_technical_implementation,
    _prompt_context_learning_animation_narration,
    _prompt_context_learning_code,
    _prompt_detect_plugins,
    _prompt_rag_query_generation_code,
    _prompt_rag_query_generation_vision_storyboard,
    _prompt_rag_query_generation_technical,
    _prompt_rag_query_generation_narration,
    _prompt_rag_query_generation_fix_error
)
from typing import Union, List
  
def get_prompt_scene_plan(topic: str, description: str) -> str:
    """
    Generate a prompt for scene planning based on the given parameters.

    Args:
        topic (str): The topic of the video.
        description (str): A brief description of the video content.

    Returns:
        str: The formatted prompt for scene planning.
    """
    prompt = _prompt_scene_plan.format(topic=topic, description=description)
    return prompt

def get_prompt_scene_vision_storyboard(scene_number: int, topic: str, description: str, scene_outline: str, relevant_plugins: List[str]) -> str:
    prompt = _prompt_scene_vision_storyboard.format(
        scene_number=scene_number,
        topic=topic,
        description=description,
        scene_outline=scene_outline,
        relevant_plugins=", ".join(relevant_plugins)
    )
    return prompt

def get_prompt_scene_technical_implementation(scene_number: int, topic: str, description: str, scene_outline: str, scene_vision_storyboard: str, relevant_plugins: List[str], additional_context: Union[str, List[str]] = None) -> str:
    prompt = _prompt_scene_technical_implementation.format(
        scene_number=scene_number,
        topic=topic,
        description=description,
        scene_outline=scene_outline,
        scene_vision_storyboard=scene_vision_storyboard,
        relevant_plugins=", ".join(relevant_plugins)
    )
    if additional_context is not None:
        if isinstance(additional_context, str):
            prompt += f"\nAdditional context: {additional_context}"
        elif isinstance(additional_context, list):
            prompt += f"\nAdditional context: {additional_context[0]}"
            if len(additional_context) > 1:
                prompt += f"\n" + "\n".join(additional_context[1:])
    return prompt

def get_prompt_scene_animation_narration(scene_number: int, topic: str, description: str, scene_outline: str, scene_vision_storyboard: str, technical_implementation_plan: str, relevant_plugins: List[str]) -> str:
    prompt = _prompt_scene_animation_narration.format(
        scene_number=scene_number,
        topic=topic,
        description=description,
        scene_outline=scene_outline,
        scene_vision_storyboard=scene_vision_storyboard,
        technical_implementation_plan=technical_implementation_plan,
        relevant_plugins=", ".join(relevant_plugins)
    )
    return prompt

def get_prompt_code_generation(topic: str,
                               description: str,
                               scene_outline: str,
                               scene_implementation: str,
                               scene_number: int,
                               additional_context: Union[str, List[str]] = None) -> str:
    """
    Generate a prompt for code generation based on the given video plan and implementation details.

    Args:
        topic (str): The topic of the video.
        description (str): A brief description of the video content.
        scene_outline (str): The scene outline.
        scene_implementation (str): The detailed scene implementation.
        scene_number (int): The scene number
        additional_context (Union[str, List[str]]): Additional context to include in the prompt
    Returns:
        str: The formatted prompt for code generation.
    """
    prompt = _prompt_code_generation.format(
        topic=topic,
        description=description,
        scene_outline=scene_outline,
        scene_implementation=scene_implementation,
        scene_number=scene_number
    )
    if additional_context is not None:
        if isinstance(additional_context, str):
            prompt += f"\nAdditional context: {additional_context}"
        elif isinstance(additional_context, list):
            prompt += f"\nAdditional context: {additional_context[0]}"
            if len(additional_context) > 1:
                prompt += f"\n" + "\n".join(additional_context[1:])
    return prompt

def get_prompt_fix_error(implementation_plan: str, manim_code: str, error: str, additional_context: Union[str, List[str]] = None) -> str:
    """
    Generate a prompt to fix errors in the given manim code.

    Args:
        implementation_plan (str): The implementation plan of the scene.
        code (str): The manim code with errors.
        error (str): The error message encountered.

    Returns:
        str: The formatted prompt to fix the code errors.
    """
    prompt = _prompt_fix_error.format(
        implementation_plan=implementation_plan,
        manim_code=manim_code,
        error_message=error
    )
    if additional_context is not None:
        if isinstance(additional_context, str):
            prompt += f"\nAdditional context: {additional_context}"
        elif isinstance(additional_context, list) and additional_context:
            prompt += f"\nAdditional context: {additional_context[0]}"
            if len(additional_context) > 1:
                prompt += f"\n" + "\n".join(additional_context[1:])
    return prompt

def get_prompt_visual_fix_error(implementation: str, generated_code: str) -> str:
    prompt = _prompt_visual_fix_error.format(
        implementation=implementation,
        generated_code=generated_code
    )
    return prompt

def get_banned_reasonings() -> List[str]:
    return _banned_reasonings.split("\n")

def get_prompt_rag_query_generation_vision_storyboard(scene_plan: str, relevant_plugins: str) -> str:
    prompt = _prompt_rag_query_generation_vision_storyboard.format(
        scene_plan=scene_plan,
        relevant_plugins=relevant_plugins
    )
    return prompt

def get_prompt_rag_query_generation_technical(storyboard: str, relevant_plugins: str) -> str:
    """For generating RAG queries during storyboard to technical implementation stage"""
    prompt = _prompt_rag_query_generation_technical.format(
        storyboard=storyboard,
        relevant_plugins=relevant_plugins
    )
    return prompt

def get_prompt_rag_query_generation_narration(storyboard: str, relevant_plugins: str) -> str:
    """For generating RAG queries during storyboard to narration stage"""
    prompt = _prompt_rag_query_generation_narration.format(
        storyboard=storyboard,
        relevant_plugins=relevant_plugins
    )
    return prompt

def get_prompt_rag_query_generation_code(implementation_plan: str, relevant_plugins: str) -> str:
    """For generating RAG queries during technical implementation to code generation stage"""
    prompt = _prompt_rag_query_generation_code.format(
        implementation_plan=implementation_plan,
        relevant_plugins=relevant_plugins
    )
    return prompt

def get_prompt_rag_query_generation_fix_error(error: str, code: str, relevant_plugins: str) -> str:
    prompt = _prompt_rag_query_generation_fix_error.format(
        error=error,
        code=code,
        relevant_plugins=relevant_plugins
    )
    return prompt

def get_prompt_context_learning_scene_plan(examples: str) -> str:
    prompt = _prompt_context_learning_scene_plan.format(
        examples=examples
    )
    return prompt

def get_prompt_context_learning_vision_storyboard(examples: str) -> str:
    prompt = _prompt_context_learning_vision_storyboard.format(
        examples=examples
    )
    return prompt

def get_prompt_context_learning_technical_implementation(examples: str) -> str:
    prompt = _prompt_context_learning_technical_implementation.format(
        examples=examples
    )
    return prompt

def get_prompt_context_learning_animation_narration(examples: str) -> str:
    prompt = _prompt_context_learning_animation_narration.format(
        examples=examples
    )
    return prompt

def get_prompt_context_learning_code(examples: str) -> str:
    prompt = _prompt_context_learning_code.format(
        examples=examples
    )
    return prompt

def get_prompt_detect_plugins(topic: str, description: str, plugin_descriptions: str) -> str:
    """
    Generate a prompt for detecting relevant plugins based on topic and description.

    Args:
        topic (str): The video topic
        description (str): The video description
        plugin_descriptions (str): JSON string of available plugin descriptions

    Returns:
        str: The formatted prompt for plugin detection
    """
    prompt = _prompt_detect_plugins.format(
        topic=topic,
        description=description,
        plugin_descriptions=plugin_descriptions
    )
    return prompt

def get_prompt_animation(topic: str, description: str, additional_context: Union[str, List[str]] = None) -> str:
    prompt = _prompt_animation_simple.format(
        topic=topic,
        description=description
    )
    if additional_context is not None:
        if isinstance(additional_context, str):
            prompt += f"\nAdditional context: {additional_context}"
        elif isinstance(additional_context, list) and additional_context:
            prompt += f"\nAdditional context: {additional_context[0]}"
            if len(additional_context) > 1:
                prompt += f"\n" + "\n".join(additional_context[1:])
    return prompt

def get_prompt_animation_fix_error(text_explanation: str, manim_code: str, error: str, additional_context: Union[str, List[str]] = None) -> str:
    """
    Generate a prompt to fix errors in the given manim code.

    Args:
        text_explanation (str): The implementation plan of the scene.
        code (str): The manim code with errors.
        error (str): The error message encountered.

    Returns:
        str: The formatted prompt to fix the code errors.
    """
    prompt = _prompt_animation_fix_error.format(
        text_explanation=text_explanation,
        manim_code=manim_code,
        error_message=error
    )
    if additional_context is not None:
        if isinstance(additional_context, str):
            prompt += f"\nAdditional context: {additional_context}"
        elif isinstance(additional_context, list):
            prompt += f"\nAdditional context: {additional_context[0]}"
            if len(additional_context) > 1:
                prompt += f"\n" + "\n".join(additional_context[1:])
    return prompt

def get_prompt_animation_rag_query_generation(topic: str, context: str, relevant_plugins: str) -> str:
    if context is None:
        context = ""
    prompt = _prompt_animation_rag_query_generation.format(
        topic=topic,
        context=context,
        relevant_plugins=relevant_plugins
    )
    return prompt

def get_prompt_animation_rag_query_generation_fix_error(text_explanation: str, error: str, code: str) -> str:
    prompt = _prompt_animation_rag_query_generation_fix_error.format(
        text_explanation=text_explanation,
        error=error,
        code=code
    )
    return prompt