File size: 18,808 Bytes
6ec19f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import os
import json
import argparse
import tempfile
from typing import Dict, List, Union
from datetime import datetime
from dotenv import load_dotenv
from moviepy import VideoFileClip
from mllm_tools.litellm import LiteLLMWrapper
from mllm_tools.gemini import GeminiWrapper
from eval_suite.utils import calculate_geometric_mean
from eval_suite.text_utils import parse_srt_to_text, fix_transcript, evaluate_text
from eval_suite.video_utils import evaluate_video_chunk_new
from eval_suite.image_utils import evaluate_sampled_images
load_dotenv()
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), "src", "utils", "allowed_models.json")) as f:
ALLOWED_MODELS = json.load(f)["allowed_models"]
def combine_results(output_folder: str, combined_file: str, results: Dict[str, Dict]) -> None:
"""
Combine all evaluation results into a single file.
Args:
output_folder (str): Directory to store the combined file.
combined_file (str): Name of the combined file.
results (Dict[str, Dict]): Dictionary of evaluation results with file names as keys.
Returns:
None
"""
combined_path = os.path.join(output_folder, combined_file)
with open(combined_path, 'w') as output_file:
json.dump(results, output_file, indent=4)
def save_individual_result(output_folder: str, file_name: str, result: Dict) -> None:
"""
Save individual evaluation result to a file.
Args:
output_folder (str): Directory to store the evaluation file.
file_name (str): Name of the file.
result (Dict): Evaluation result.
Returns:
None
"""
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
result_file = f"evaluation_{file_name}_{current_time}.json"
os.makedirs(output_folder, exist_ok=True)
result_path = os.path.join(output_folder, result_file)
with open(result_path, 'w') as output_file:
json.dump(result, output_file, indent=4)
def evaluate_text_file(model, transcript_path, retry_limit):
"""
Evaluate a text file using the provided model.
Args:
model: The model to use for evaluation.
transcript_path (str): Path to the transcript file (.srt or .txt).
retry_limit (int): Number of retry attempts for evaluation.
Returns:
Dict or None: Evaluation results if successful, None if file format unsupported.
"""
if not transcript_path.endswith(('.srt', '.txt')):
print(f"Skipping {transcript_path}: Unsupported file format for text evaluation.")
return None
if transcript_path.endswith(".srt"):
transcript = parse_srt_to_text(transcript_path)
elif transcript_path.endswith(".txt"):
with open(transcript_path) as f:
transcript = f.read().strip()
else:
raise ValueError("Unrecognized transcript file format.")
capital_letter_proportion = sum(1 for c in transcript if c.isupper()) / sum(1 for c in transcript if c.isalpha())
if capital_letter_proportion < 0.01:
transcript = fix_transcript(model, transcript)
print(f"Performing text evaluation: {os.path.basename(transcript_path)}")
result = evaluate_text(model, transcript, retry_limit)
return result
def evaluate_video_file(model, video_path, transcript_path, description_path, target_fps=None, output_folder=None):
"""
Evaluate a video file using the provided model.
Args:
model: The model to use for evaluation.
video_path (str): Path to the video file.
transcript_path (str): Path to the transcript file.
description_path (str): Path to the description file.
target_fps (int, optional): Target frames per second for video processing.
output_folder (str, optional): Directory to store output files.
Returns:
Dict or None: Evaluation results if successful, None if file format unsupported.
"""
if not video_path.endswith(('.mp4', '.mkv')):
print(f"Skipping {video_path}: Unsupported file format for video evaluation.")
return None
moviepy_temp_dir = os.path.join(output_folder, "moviepy_temp")
# Chunking
num_chunks = 10
with VideoFileClip(video_path) as clip:
duration = clip.duration
chunk_duration = duration / num_chunks
results = []
# Create a temporary directory in the output_folder
temp_dir_parent = output_folder or os.getcwd()
with tempfile.TemporaryDirectory(dir=temp_dir_parent) as temp_dir:
for i in range(10):
start = i * chunk_duration
end = min(start + chunk_duration, duration)
chunk = clip.subclipped(start, end)
chunk_path = os.path.join(temp_dir, f"chunk_{i+1}.mp4")
# Explicitly set the temp_audiofile path with matching codec
temp_audiofile = os.path.join(moviepy_temp_dir, f"temp_audio_chunk_{i+1}.m4a")
chunk.write_videofile(
chunk_path,
codec="libx264",
audio_codec="aac",
temp_audiofile=temp_audiofile,
audio_bitrate="192k",
preset="ultrafast", # Speed up encoding
logger=None
)
# Create processed videos folder inside output_folder
processed_videos_dir = os.path.join(output_folder, "processed_videos")
save_path = os.path.join(processed_videos_dir, f"processed_chunk_{i+1}.mp4")
result = evaluate_video_chunk_new(
model,
chunk_path,
transcript_path,
description_path,
target_fps=target_fps,
save_processed_video=save_path
)
results.append(result)
score_dict = {}
for key in results[0]["evaluation"].keys():
score_dict[key] = []
for result in results:
score_dict[key].append(result["evaluation"][key]["score"])
evaluation = {}
for key, scores in score_dict.items():
evaluation[key] = {"score": calculate_geometric_mean(scores)}
result_json = {
"evaluation": evaluation,
"video_chunks": results
}
return result_json
def extract_scores(data: Union[Dict, List]) -> List[int]:
"""
Extract all score values from a nested dictionary or list structure.
Args:
data (Union[Dict, List]): The data structure to extract scores from.
Returns:
List[int]: List of extracted score values.
"""
scores = []
if isinstance(data, dict):
for key, value in data.items():
if "chunks" in key:
continue
elif isinstance(value, dict) or isinstance(value, list):
scores.extend(extract_scores(value))
elif key == 'score':
scores.append(value)
elif isinstance(data, list):
for item in data:
scores.extend(extract_scores(item))
return scores
def calculate_overall_score(result: Dict) -> float:
"""
Calculate the overall score from evaluation results.
Args:
result (Dict): Dictionary containing evaluation results.
Returns:
float: The calculated overall score.
"""
scores = extract_scores(result)
overall_score = calculate_geometric_mean(scores)
return overall_score
def process_topic_name(topic_name: str) -> str:
"""
Process a topic name by capitalizing words and handling special characters.
Args:
topic_name (str): The topic name to process.
Returns:
str: The processed topic name.
"""
words = topic_name.replace("_s_", "'s_").split("_")
return " ".join([word.capitalize() for word in words])
def merge_dicts(dict1: dict, dict2: dict) -> dict:
"""
Recursively merge two dictionaries.
Args:
dict1 (dict): First dictionary.
dict2 (dict): Second dictionary.
Returns:
dict: Merged dictionary.
"""
merged = dict1.copy()
for key, value in dict2.items():
if key in merged and isinstance(merged[key], dict) and isinstance(value, dict):
merged[key] = merge_dicts(merged[key], value)
else:
merged[key] = value
return merged
def process_theorem(models, file_path: str, eval_type: str, retry_limit: int,
target_fps: int = None, use_parent_folder_as_topic: bool = False,
output_folder: str = None) -> tuple[str, dict]:
"""
Process a theorem file or directory for evaluation.
Args:
models: Dictionary of models for different evaluation types.
file_path (str): Path to the file or directory to evaluate.
eval_type (str): Type of evaluation to perform.
retry_limit (int): Number of retry attempts.
target_fps (int, optional): Target frames per second for video processing.
use_parent_folder_as_topic (bool, optional): Use parent folder name as topic.
output_folder (str, optional): Directory to store output files.
Returns:
tuple[str, dict]: Tuple of file name and evaluation results.
"""
ext_map = {
'text': ('.txt', '.srt'),
'video': ('.mp4', '.mkv')
}
# Handle single file evaluation
if os.path.isfile(file_path):
file_ext = os.path.splitext(file_path)[1].lower()
file_name = os.path.basename(file_path)
if eval_type == "text" and file_ext in ext_map['text']:
return file_name, evaluate_text_file(models['text'], file_path, retry_limit)
elif eval_type == "video" and file_ext in ext_map['video']:
if use_parent_folder_as_topic:
topic_name = os.path.basename(os.path.dirname(file_path))
else:
topic_name = None
topic_name = process_topic_name(topic_name)
return file_name, evaluate_video_file(models['video'], file_path, None, topic_name, target_fps, output_folder)
elif eval_type == "image" and file_ext in ext_map['video']:
if use_parent_folder_as_topic:
topic_name = os.path.basename(os.path.dirname(file_path))
else:
topic_name = None
topic_name = process_topic_name(topic_name)
return file_name, evaluate_sampled_images(models['image'], file_path, topic_name, num_chunks=10, output_folder=output_folder)
elif eval_type == "all":
raise ValueError("Evaluation type 'all' is not supported for a single file. Try passing a folder with both a video and a subtitle file.")
else:
raise ValueError(f"File type of {file_path} does not match evaluation type {eval_type!r}")
# Handle directory evaluation
theorem_dir = file_path
all_files = os.listdir(theorem_dir)
# Look for transcript files, prioritizing .srt over .txt if both exist
transcript_file_candidates = [f for f in all_files if f.endswith(ext_map['text']) and not f.endswith('_scene_outline.txt')]
srt_files = [f for f in transcript_file_candidates if f.endswith('.srt')]
txt_files = [f for f in transcript_file_candidates if f.endswith('.txt')]
transcript_path = None
if srt_files:
transcript_path = os.path.join(theorem_dir, srt_files[0])
elif txt_files:
transcript_path = os.path.join(theorem_dir, txt_files[0])
video_file_candidates = [f for f in all_files if f.endswith(ext_map['video'])]
video_path = os.path.join(theorem_dir, video_file_candidates[0]) if len(video_file_candidates) == 1 else None
topic_name = os.path.basename(theorem_dir)
topic_name = process_topic_name(topic_name)
if not video_path:
print(f"Skipping {theorem_dir}: No video file found")
return None, None
text_result = video_result = image_result = None
if eval_type == "text" or eval_type == "all":
if transcript_path is None:
print(f"Warning: No suitable transcript file found in {theorem_dir}")
else:
text_result = evaluate_text_file(models['text'], transcript_path, retry_limit)
if eval_type == "video" or eval_type == "all":
assert video_path is not None, f"Expected 1 video file, got {len(video_file_candidates)} for {theorem_dir}"
video_result = evaluate_video_file(models['video'], video_path, transcript_path, topic_name, target_fps, output_folder)
if eval_type == "image" or eval_type == "all":
assert video_path is not None, f"Expected 1 video file, got {len(video_file_candidates)} for {theorem_dir}"
image_result = evaluate_sampled_images(models['image'], video_path, topic_name, num_chunks=10, output_folder=output_folder)
if eval_type == "all":
result = {}
if text_result:
result = merge_dicts(result, text_result)
if video_result:
result = merge_dicts(result, video_result)
if image_result:
result = merge_dicts(result, image_result)
if result:
result["evaluation"]["overall_score"] = calculate_overall_score(result)
else:
result = text_result if eval_type == "text" else video_result if eval_type == "video" else image_result if eval_type == "image" else None
file_name = os.path.basename(theorem_dir)
return file_name, result
def main():
"""
Main function to run the evaluation script.
Parses command line arguments and orchestrates the evaluation process
for text, video, and image content using specified AI models.
"""
parser = argparse.ArgumentParser(description='Automatic evaluation of theorem explanation videos with LLMs')
parser.add_argument('--model_text', type=str,
choices=ALLOWED_MODELS,
default='azure/gpt-4o',
help='Select the AI model to use for text evaluation')
parser.add_argument('--model_video', type=str,
choices=['gemini/gemini-1.5-pro-002',
'gemini/gemini-2.0-flash-exp',
'gemini/gemini-2.0-pro-exp-02-05'],
default='gemini/gemini-1.5-pro-002',
help='Select the AI model to use for video evaluation')
parser.add_argument('--model_image', type=str,
choices=ALLOWED_MODELS,
default='azure/gpt-4o',
help='Select the AI model to use for image evaluation')
parser.add_argument('--eval_type', type=str, choices=['text', 'video', 'image', 'all'], default='all', help='Type of evaluation to perform')
parser.add_argument('--file_path', type=str, help='Path to a file or a theorem folder', required=True)
parser.add_argument('--output_folder', type=str, help='Directory to store the evaluation files', required=True)
parser.add_argument('--retry_limit', type=int, default=3, help='Number of retry attempts for each inference')
parser.add_argument('--combine', action='store_true', help='Combine all results into a single JSON file')
parser.add_argument('--bulk_evaluate', action='store_true', help='Evaluate a folder of theorems together', default=False)
parser.add_argument('--target_fps', type=int, help='Target FPS for video processing. If not set, original video FPS will be used', required=False)
parser.add_argument('--use_parent_folder_as_topic', action='store_true', help='Use parent folder name as topic name for single file evaluation', default=True)
parser.add_argument('--max_workers', type=int, default=4, help='Maximum number of concurrent workers for parallel processing')
args = parser.parse_args()
# Initialize separate models
text_model = LiteLLMWrapper(
model_name=args.model_text,
temperature=0.0,
)
video_model = GeminiWrapper(
model_name=args.model_video,
temperature=0.0,
)
image_model = LiteLLMWrapper(
model_name=args.model_image,
temperature=0.0,
)
models = {
'text': text_model,
'video': video_model,
'image': image_model
}
theorem_dirs = []
if args.bulk_evaluate:
assert os.path.isdir(args.file_path), "File path must be a folder for --bulk_evaluate"
for root, dirnames, _ in os.walk(args.file_path):
if not any(f.endswith(".mp4") for f in os.listdir(root)):
continue
theorem_dirs.append(root)
elif os.path.isdir(args.file_path):
assert any(f.endswith(".mp4") for f in os.listdir(args.file_path)), "The provided folder must contain a video file"
theorem_dirs.append(args.file_path)
# Create output directory and its temp subdirectories if it doesn't exist
os.makedirs(args.output_folder, exist_ok=True)
moviepy_temp_dir = os.path.join(args.output_folder, "moviepy_temp")
os.makedirs(moviepy_temp_dir, exist_ok=True)
VideoFileClip.DEFAULT_TEMP_DIR = moviepy_temp_dir
processed_videos_dir = os.path.join(args.output_folder, "processed_videos")
os.makedirs(processed_videos_dir, exist_ok=True)
results = {}
if theorem_dirs:
for theorem_dir in theorem_dirs:
file_name, result = process_theorem(
models,
theorem_dir,
args.eval_type,
args.retry_limit,
args.target_fps,
args.use_parent_folder_as_topic,
args.output_folder
)
if result is not None:
results[file_name] = result
if not args.combine:
save_individual_result(args.output_folder, file_name, result)
else:
file_name, result = process_theorem(
models,
args.file_path,
args.eval_type,
args.retry_limit,
args.target_fps,
args.use_parent_folder_as_topic,
args.output_folder
)
if result is not None:
results[file_name] = result
if not args.combine:
save_individual_result(args.output_folder, file_name, result)
if args.combine:
if len(results) > 1:
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
combined_file = f"evaluation_{current_time}.json"
combine_results(args.output_folder, combined_file, results)
print("Combining results completed.")
else:
for file_name, result in results.items():
save_individual_result(args.output_folder, file_name, result)
os.rmdir(moviepy_temp_dir)
if __name__ == "__main__":
main()
|