File size: 44,881 Bytes
6ec19f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 |
import os
import json
import asyncio
import uuid
from typing import Union, List, Dict, Optional, Protocol
from dataclasses import dataclass
from abc import ABC, abstractmethod
import argparse
import re
from dotenv import load_dotenv
from mllm_tools.litellm import LiteLLMWrapper
from mllm_tools.openrouter import OpenRouterWrapper
from src.core.video_planner import EnhancedVideoPlanner
from src.core.code_generator import CodeGenerator # Use existing CodeGenerator
from src.core.video_renderer import VideoRenderer # Use existing VideoRenderer
from src.utils.utils import extract_xml
from src.config.config import Config
from task_generator import get_banned_reasonings
from task_generator.prompts_raw import (_code_font_size, _code_disable, _code_limit, _prompt_manim_cheatsheet)
# Load configuration
load_dotenv(override=True)
# Load allowed models
allowed_models_path = os.path.join(os.path.dirname(__file__), 'src', 'utils', 'allowed_models.json')
with open(allowed_models_path, 'r') as f:
allowed_models_data = json.load(f)
allowed_models = allowed_models_data.get("allowed_models", [])
@dataclass
class VideoGenerationConfig:
"""Configuration for video generation pipeline."""
planner_model: str
scene_model: Optional[str] = None
helper_model: Optional[str] = None
output_dir: str = "output"
verbose: bool = False
use_rag: bool = False
use_context_learning: bool = False
context_learning_path: str = "data/context_learning"
chroma_db_path: str = "data/rag/chroma_db"
manim_docs_path: str = "data/rag/manim_docs"
embedding_model: str = "hf:ibm-granite/granite-embedding-30m-english"
use_visual_fix_code: bool = False
use_langfuse: bool = True
max_scene_concurrency: int = 5
max_topic_concurrency: int = 1
max_retries: int = 5
# Renderer optimizations
enable_caching: bool = True
default_quality: str = "medium"
use_gpu_acceleration: bool = False
preview_mode: bool = False
max_concurrent_renders: int = 4
# Protocols for dependency injection (Interface Segregation Principle)
class ModelProvider(Protocol):
"""Protocol for AI model providers."""
def __call__(self, prompt: str, **kwargs) -> str: ...
class PlannerInterface(Protocol):
"""Interface for video planners."""
async def generate_scene_outline(self, topic: str, description: str, session_id: str) -> str: ...
async def generate_scene_implementation_concurrently_enhanced(
self, topic: str, description: str, plan: str, session_id: str
) -> List[str]: ...
class CodeGeneratorInterface(Protocol):
"""Interface for code generators."""
def generate_manim_code(self, **kwargs) -> tuple: ...
def fix_code_errors(self, **kwargs) -> tuple: ...
def visual_self_reflection(self, **kwargs) -> tuple: ...
class RendererInterface(Protocol):
"""Interface for video renderers."""
async def render_scene_optimized(self, **kwargs) -> tuple: ...
async def combine_videos_optimized(self, topic: str, **kwargs) -> str: ...
# Factory for creating components (Factory Pattern)
class ComponentFactory:
"""Factory for creating video generation components."""
@staticmethod
def create_model(model_name: str, config: VideoGenerationConfig) -> ModelProvider:
"""Create AI model wrapper."""
# Use OpenRouter wrapper for OpenRouter models
if model_name.startswith('openrouter/'):
return OpenRouterWrapper(
model_name=model_name,
temperature=0.7,
print_cost=True,
verbose=config.verbose,
use_langfuse=config.use_langfuse
)
else:
# Use LiteLLM wrapper for other models
return LiteLLMWrapper(
model_name=model_name,
temperature=0.7,
print_cost=True,
verbose=config.verbose,
use_langfuse=config.use_langfuse
)
@staticmethod
def create_planner(planner_model: ModelProvider, helper_model: ModelProvider,
config: VideoGenerationConfig, session_id: str) -> PlannerInterface:
"""Create video planner with enhanced capabilities."""
return EnhancedVideoPlanner(
planner_model=planner_model,
helper_model=helper_model,
output_dir=config.output_dir,
print_response=config.verbose,
use_context_learning=config.use_context_learning,
context_learning_path=config.context_learning_path,
use_rag=config.use_rag,
session_id=session_id,
chroma_db_path=config.chroma_db_path,
manim_docs_path=config.manim_docs_path,
embedding_model=config.embedding_model,
use_langfuse=config.use_langfuse,
max_scene_concurrency=config.max_scene_concurrency,
max_step_concurrency=3,
enable_caching=config.enable_caching
)
@staticmethod
def create_code_generator(scene_model: ModelProvider, helper_model: ModelProvider,
config: VideoGenerationConfig, session_id: str) -> CodeGeneratorInterface:
"""Create code generator with existing implementation."""
return CodeGenerator( # Use existing CodeGenerator
scene_model=scene_model,
helper_model=helper_model,
output_dir=config.output_dir,
print_response=config.verbose,
use_rag=config.use_rag,
use_context_learning=config.use_context_learning,
context_learning_path=config.context_learning_path,
chroma_db_path=config.chroma_db_path,
manim_docs_path=config.manim_docs_path,
embedding_model=config.embedding_model,
use_visual_fix_code=config.use_visual_fix_code,
use_langfuse=config.use_langfuse,
session_id=session_id
)
@staticmethod
def create_renderer(config: VideoGenerationConfig) -> RendererInterface:
"""Create video renderer with existing implementation."""
return VideoRenderer( # Use existing VideoRenderer
output_dir=config.output_dir,
print_response=config.verbose,
use_visual_fix_code=config.use_visual_fix_code
)
# Enhanced VideoRenderer wrapper to add async methods
class AsyncVideoRendererWrapper:
"""Wrapper to add async functionality to existing VideoRenderer."""
def __init__(self, renderer: VideoRenderer, config: VideoGenerationConfig):
self.renderer = renderer
self.config = config
self.render_stats = {'cache_hits': 0, 'total_renders': 0}
async def render_scene_optimized(self, **kwargs) -> tuple:
"""Async wrapper for scene rendering with intelligent error handling."""
# Extract parameters
code = kwargs.get('code')
file_prefix = kwargs.get('file_prefix')
curr_scene = kwargs.get('curr_scene')
curr_version = kwargs.get('curr_version', 1)
code_dir = kwargs.get('code_dir')
media_dir = kwargs.get('media_dir')
code_generator = kwargs.get('code_generator')
scene_implementation = kwargs.get('scene_implementation')
description = kwargs.get('description')
scene_outline = kwargs.get('scene_outline')
scene_trace_id = kwargs.get('scene_trace_id')
topic = kwargs.get('topic')
session_id = kwargs.get('session_id')
# Use existing render_scene method with all parameters
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(
None,
self.renderer.render_scene,
code,
file_prefix,
curr_scene,
curr_version,
code_dir,
media_dir,
False, # use_visual_fix_code
None, # visual_self_reflection_func
None, # banned_reasonings
scene_trace_id,
topic,
session_id,
code_generator,
scene_implementation,
description,
scene_outline
)
self.render_stats['total_renders'] += 1
return result
async def render_multiple_scenes_parallel(self, scene_configs: List[Dict],
max_concurrent: int = None) -> List[tuple]:
"""Render multiple scenes in parallel."""
max_concurrent = max_concurrent or self.config.max_concurrent_renders
semaphore = asyncio.Semaphore(max_concurrent)
async def render_single_scene(config):
async with semaphore:
return await self.render_scene_optimized(**config)
print(f"π Starting parallel rendering of {len(scene_configs)} scenes (max concurrent: {max_concurrent})")
tasks = [render_single_scene(config) for config in scene_configs]
results = await asyncio.gather(*tasks, return_exceptions=True)
successful = sum(1 for r in results if not isinstance(r, Exception))
print(f"π Render results: {successful}/{len(results)} scenes successful")
return results
async def combine_videos_optimized(self, topic: str, **kwargs) -> str:
"""Async wrapper for video combination."""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(
None,
self.renderer.combine_videos,
topic
)
# Service classes (Single Responsibility Principle)
class SessionManager:
"""Manages session IDs for video generation."""
def __init__(self, output_dir: str):
self.output_dir = output_dir
def load_or_create_session_id(self) -> str:
"""Load existing session ID or create new one."""
session_file = os.path.join(self.output_dir, "session_id.txt")
if os.path.exists(session_file):
with open(session_file, 'r') as f:
session_id = f.read().strip()
print(f"π Loaded existing session ID: {session_id}")
return session_id
session_id = str(uuid.uuid4())
os.makedirs(self.output_dir, exist_ok=True)
with open(session_file, 'w') as f:
f.write(session_id)
print(f"π Created new session ID: {session_id}")
return session_id
def save_topic_session_id(self, topic: str, session_id: str) -> None:
"""Save session ID for specific topic."""
file_prefix = re.sub(r'[^a-z0-9_]+', '_', topic.lower())
topic_dir = os.path.join(self.output_dir, file_prefix)
os.makedirs(topic_dir, exist_ok=True)
session_file = os.path.join(topic_dir, "session_id.txt")
with open(session_file, 'w') as f:
f.write(session_id)
class SceneAnalyzer:
"""Analyzes and manages scene information."""
def __init__(self, output_dir: str):
self.output_dir = output_dir
def load_implementation_plans(self, topic: str) -> Dict[int, Optional[str]]:
"""Load implementation plans for each scene."""
file_prefix = re.sub(r'[^a-z0-9_]+', '_', topic.lower())
scene_outline_path = os.path.join(self.output_dir, file_prefix, f"{file_prefix}_scene_outline.txt")
if not os.path.exists(scene_outline_path):
return {}
with open(scene_outline_path, "r") as f:
scene_outline = f.read()
scene_outline_content = extract_xml(scene_outline)
scene_count = len(re.findall(r'<SCENE_(\d+)>[^<]', scene_outline_content))
implementation_plans = {}
for i in range(1, scene_count + 1):
plan_path = os.path.join(
self.output_dir, file_prefix, f"scene{i}",
f"{file_prefix}_scene{i}_implementation_plan.txt"
)
if os.path.exists(plan_path):
with open(plan_path, "r") as f:
implementation_plans[i] = f.read()
print(f"π Found existing implementation plan for scene {i}")
else:
implementation_plans[i] = None
print(f"β Missing implementation plan for scene {i}")
return implementation_plans
def analyze_scene_status(self, topic: str) -> Dict:
"""Analyze status of all scenes for a topic."""
file_prefix = re.sub(r'[^a-z0-9_]+', '_', topic.lower())
# Check scene outline
scene_outline_path = os.path.join(self.output_dir, file_prefix, f"{file_prefix}_scene_outline.txt")
has_scene_outline = os.path.exists(scene_outline_path)
num_scenes = 0
if has_scene_outline:
with open(scene_outline_path, "r") as f:
scene_outline = f.read()
scene_outline_content = extract_xml(scene_outline)
num_scenes = len(re.findall(r'<SCENE_(\d+)>[^<]', scene_outline_content))
# Analyze each scene
scene_status = []
implementation_plans = code_files = rendered_scenes = 0
for i in range(1, num_scenes + 1):
scene_dir = os.path.join(self.output_dir, file_prefix, f"scene{i}")
# Check implementation plan
plan_path = os.path.join(scene_dir, f"{file_prefix}_scene{i}_implementation_plan.txt")
has_plan = os.path.exists(plan_path)
if has_plan:
implementation_plans += 1
# Check code files
code_dir = os.path.join(scene_dir, "code")
has_code = os.path.exists(code_dir) and any(f.endswith('.py') for f in os.listdir(code_dir))
if has_code:
code_files += 1
# Check rendered videos
has_render = os.path.exists(os.path.join(scene_dir, "succ_rendered.txt"))
if has_render:
rendered_scenes += 1
scene_status.append({
'scene_number': i,
'has_plan': has_plan,
'has_code': has_code,
'has_render': has_render
})
# Check combined video
combined_video_path = os.path.join(self.output_dir, file_prefix, f"{file_prefix}_combined.mp4")
has_combined_video = os.path.exists(combined_video_path)
return {
'topic': topic,
'has_scene_outline': has_scene_outline,
'total_scenes': num_scenes,
'implementation_plans': implementation_plans,
'code_files': code_files,
'rendered_scenes': rendered_scenes,
'has_combined_video': has_combined_video,
'scene_status': scene_status
}
# Scene rendering wrapper for existing render_scene method
class SceneRenderingService:
"""Service for rendering individual scenes with existing VideoRenderer."""
def __init__(self, renderer: VideoRenderer, code_generator: CodeGenerator,
banned_reasonings: List[str], config: VideoGenerationConfig):
self.renderer = renderer
self.code_generator = code_generator
self.banned_reasonings = banned_reasonings
self.config = config
async def render_scene_with_code_generation(self, topic: str, description: str,
scene_outline: str, scene_implementation: str,
scene_number: int, file_prefix: str,
code_dir: str, media_dir: str,
scene_trace_id: str, session_id: str) -> tuple:
"""Render a scene with code generation and error handling."""
print(f"π¬ Processing scene {scene_number} for {topic}")
try:
# Step 1: Generate Manim code
print(f"β‘ Generating code for scene {scene_number}")
code, _ = self.code_generator.generate_manim_code(
topic=topic,
description=description,
scene_outline=scene_outline,
scene_implementation=scene_implementation,
scene_number=scene_number,
scene_trace_id=scene_trace_id,
session_id=session_id
)
# Step 2: Render with intelligent error handling (single attempt - renderer handles retries and fixes)
current_version = 1
print(f"ποΈ Rendering scene {scene_number} with intelligent error handling")
try:
# Use existing render_scene method with enhanced error handling
loop = asyncio.get_event_loop()
result_code, error = await loop.run_in_executor(
None,
self.renderer.render_scene,
code,
file_prefix,
scene_number,
current_version,
code_dir,
media_dir,
False, # use_visual_fix_code
None, # visual_self_reflection_func
self.banned_reasonings,
scene_trace_id,
topic,
session_id,
self.code_generator, # Pass code generator for intelligent error handling
scene_implementation, # Pass implementation for context
description, # Pass description for context
scene_outline # Pass scene outline for context
)
if error is None:
# Success - mark as rendered
scene_dir = os.path.join(self.config.output_dir, file_prefix, f"scene{scene_number}")
success_file = os.path.join(scene_dir, "succ_rendered.txt")
with open(success_file, 'w') as f:
f.write(f"Successfully rendered with intelligent error handling")
print(f"β
Scene {scene_number} rendered successfully")
return result_code, None
else:
# Error occurred even with intelligent retry/fix attempts
print(f"β Scene {scene_number} failed after intelligent error handling: {error}")
return result_code, error
except Exception as e:
print(f"β Exception during scene {scene_number} rendering: {e}")
return code, str(e)
except Exception as e:
print(f"β Fatal error in scene {scene_number}: {e}")
return None, str(e)
# Main Video Generator (Open/Closed Principle - extensible via composition)
class EnhancedVideoGenerator:
"""Enhanced video generator following SOLID principles."""
def __init__(self, config: VideoGenerationConfig):
self.config = config
self.session_manager = SessionManager(config.output_dir)
self.scene_analyzer = SceneAnalyzer(config.output_dir)
self.banned_reasonings = get_banned_reasonings()
# Initialize session
self.session_id = self.session_manager.load_or_create_session_id()
# Create AI models
self.planner_model = ComponentFactory.create_model(config.planner_model, config)
self.scene_model = ComponentFactory.create_model(
config.scene_model or config.planner_model, config
)
self.helper_model = ComponentFactory.create_model(
config.helper_model or config.planner_model, config
)
# Create components using dependency injection
self.planner = ComponentFactory.create_planner(
self.planner_model, self.helper_model, config, self.session_id
)
self.code_generator = ComponentFactory.create_code_generator(
self.scene_model, self.helper_model, config, self.session_id
)
# Create renderer with async wrapper
base_renderer = ComponentFactory.create_renderer(config)
self.renderer = AsyncVideoRendererWrapper(base_renderer, config)
# Create scene rendering service
self.scene_service = SceneRenderingService(
base_renderer, self.code_generator, self.banned_reasonings, config
)
# Concurrency control
self.scene_semaphore = asyncio.Semaphore(config.max_scene_concurrency)
print(f"π Enhanced VideoGenerator initialized with:")
print(f" Planner: {config.planner_model}")
print(f" Scene: {config.scene_model or config.planner_model}")
print(f" Helper: {config.helper_model or config.planner_model}")
print(f" Max Scene Concurrency: {config.max_scene_concurrency}")
print(f" Caching: {'β
' if config.enable_caching else 'β'}")
print(f" GPU Acceleration: {'β
' if config.use_gpu_acceleration else 'β'}")
async def generate_scene_outline(self, topic: str, description: str) -> str:
"""Generate scene outline for topic."""
print(f"π Generating scene outline for: {topic}")
return await self.planner.generate_scene_outline(topic, description, self.session_id)
async def generate_video_pipeline(self, topic: str, description: str,
only_plan: bool = False,
specific_scenes: List[int] = None) -> None:
"""Complete video generation pipeline with enhanced performance."""
print(f"π¬ Starting enhanced video pipeline for: {topic}")
self.session_manager.save_topic_session_id(topic, self.session_id)
file_prefix = re.sub(r'[^a-z0-9_]+', '_', topic.lower())
# Step 1: Load or generate scene outline
scene_outline = await self._load_or_generate_outline(topic, description, file_prefix)
# Step 2: Generate implementation plans
implementation_plans = await self._generate_implementation_plans(
topic, description, scene_outline, file_prefix, specific_scenes
)
if only_plan:
print(f"π Plan-only mode completed for: {topic}")
return
# Step 3: Render scenes with optimization
await self._render_scenes_optimized(
topic, description, scene_outline, implementation_plans, file_prefix
)
# Step 4: Combine videos
await self._combine_videos_optimized(topic)
print(f"β
Enhanced video pipeline completed for: {topic}")
async def _load_or_generate_outline(self, topic: str, description: str, file_prefix: str) -> str:
"""Load existing outline or generate new one."""
scene_outline_path = os.path.join(self.config.output_dir, file_prefix, f"{file_prefix}_scene_outline.txt")
if os.path.exists(scene_outline_path):
with open(scene_outline_path, "r") as f:
scene_outline = f.read()
print(f"π Loaded existing scene outline for: {topic}")
# Detect plugins if RAG is enabled
if self.config.use_rag and hasattr(self.planner, 'rag_integration'):
plugins = self.planner.rag_integration.detect_relevant_plugins(topic, description)
if plugins:
self.planner.rag_integration.set_relevant_plugins(plugins)
print(f"π Detected relevant plugins: {plugins}")
else:
print(f"π Generating new scene outline for: {topic}")
scene_outline = await self.planner.generate_scene_outline(topic, description, self.session_id)
os.makedirs(os.path.join(self.config.output_dir, file_prefix), exist_ok=True)
with open(scene_outline_path, "w") as f:
f.write(scene_outline)
return scene_outline
async def _generate_implementation_plans(self, topic: str, description: str,
scene_outline: str, file_prefix: str,
specific_scenes: List[int] = None) -> Dict[int, str]:
"""Generate missing implementation plans."""
# First, ensure the topic directory exists
topic_dir = os.path.join(self.config.output_dir, file_prefix)
os.makedirs(topic_dir, exist_ok=True)
try:
implementation_plans_dict = self.scene_analyzer.load_implementation_plans(topic)
if not implementation_plans_dict:
print(f"No existing implementation plans found for {topic}. Generating all plans from scratch.")
scene_outline_content = extract_xml(scene_outline)
scene_count = len(re.findall(r'<SCENE_(\d+)>[^<]', scene_outline_content))
if scene_count == 0:
print(f"β οΈ Warning: No scenes found in scene outline. Check the regex pattern and scene outline format.")
print(f"Scene outline content: {scene_outline_content[:100]}...")
print(f"Found {scene_count} scenes in the outline.")
implementation_plans_dict = {i: None for i in range(1, scene_count + 1)}
# Find missing scenes
missing_scenes = [
scene_num for scene_num, plan in implementation_plans_dict.items()
if plan is None and (specific_scenes is None or scene_num in specific_scenes)
]
if missing_scenes:
print(f"π Generating implementation plans for scenes: {missing_scenes}")
# Make sure scene directories exist for missing scenes
for scene_num in missing_scenes:
scene_dir = os.path.join(topic_dir, f"scene{scene_num}")
os.makedirs(scene_dir, exist_ok=True)
# Use enhanced concurrent generation if available
if hasattr(self.planner, 'generate_scene_implementation_concurrently_enhanced'):
try:
all_plans = await self.planner.generate_scene_implementation_concurrently_enhanced(
topic, description, scene_outline, self.session_id
)
if not all_plans:
print(f"β Error: No implementation plans were returned!")
return implementation_plans_dict
# Update missing plans
updated_count = 0
for i, scene_num in enumerate(sorted(missing_scenes)):
if i < len(all_plans):
plan = all_plans[i]
if isinstance(plan, str) and plan.strip():
implementation_plans_dict[scene_num] = plan
updated_count += 1
else:
print(f"β οΈ Warning: Empty or invalid plan for scene {scene_num}")
print(f"β
Generated {updated_count}/{len(missing_scenes)} implementation plans")
except Exception as e:
print(f"β Error generating implementation plans: {str(e)}")
else:
# Fallback to sequential generation
print("β οΈ Using fallback sequential plan generation")
# Implement sequential generation if needed
else:
print("β
All implementation plans already exist.")
return implementation_plans_dict
except Exception as e:
print(f"β Fatal error in implementation plan generation: {str(e)}")
raise
async def _render_scenes_optimized(self, topic: str, description: str,
scene_outline: str, implementation_plans: Dict[int, str],
file_prefix: str) -> None:
"""Render scenes with enhanced optimization."""
# Determine which scenes need processing
scenes_to_process = self._get_scenes_to_process(implementation_plans, file_prefix)
if not scenes_to_process:
print(f"β
No scenes need processing for: {topic}")
return
print(f"π¬ Rendering {len(scenes_to_process)} scenes with optimization...")
# Create render tasks
render_tasks = []
for scene_num, implementation_plan in scenes_to_process:
task = self._create_scene_render_task(
topic, description, scene_outline, implementation_plan,
scene_num, file_prefix
)
render_tasks.append(task)
# Execute with concurrency control
semaphore = asyncio.Semaphore(self.config.max_concurrent_renders)
async def execute_render_task(task):
async with semaphore:
return await task
# Run all render tasks
results = await asyncio.gather(
*[execute_render_task(task) for task in render_tasks],
return_exceptions=True
)
# Process results
successful_renders = sum(1 for r in results if not isinstance(r, Exception) and r[1] is None)
print(f"π Render results: {successful_renders}/{len(results)} scenes successful")
def _get_scenes_to_process(self, implementation_plans: Dict[int, str],
file_prefix: str) -> List[tuple]:
"""Determine which scenes need processing."""
scenes_to_process = []
for scene_num, implementation_plan in implementation_plans.items():
if implementation_plan is None:
continue
scene_dir = os.path.join(self.config.output_dir, file_prefix, f"scene{scene_num}")
# Check if scene already successfully rendered
if not os.path.exists(os.path.join(scene_dir, "succ_rendered.txt")):
scenes_to_process.append((scene_num, implementation_plan))
return scenes_to_process
def _create_scene_render_task(self, topic: str, description: str, scene_outline: str,
implementation_plan: str, scene_num: int, file_prefix: str):
"""Create render task for a scene."""
# Generate or load scene trace ID
scene_dir = os.path.join(self.config.output_dir, file_prefix, f"scene{scene_num}")
subplan_dir = os.path.join(scene_dir, "subplans")
os.makedirs(subplan_dir, exist_ok=True)
scene_trace_id_path = os.path.join(subplan_dir, "scene_trace_id.txt")
try:
with open(scene_trace_id_path, 'r') as f:
scene_trace_id = f.read().strip()
except FileNotFoundError:
scene_trace_id = str(uuid.uuid4())
with open(scene_trace_id_path, 'w') as f:
f.write(scene_trace_id)
# Create directories
code_dir = os.path.join(scene_dir, "code")
media_dir = os.path.join(self.config.output_dir, file_prefix, "media")
os.makedirs(code_dir, exist_ok=True)
# Return coroutine that will be awaited later
return self.scene_service.render_scene_with_code_generation(
topic=topic,
description=description,
scene_outline=scene_outline,
scene_implementation=implementation_plan,
scene_number=scene_num,
file_prefix=file_prefix,
code_dir=code_dir,
media_dir=media_dir,
scene_trace_id=scene_trace_id,
session_id=self.session_id
)
async def _combine_videos_optimized(self, topic: str) -> None:
"""Combine videos with hardware acceleration."""
print(f"ποΈ Combining videos for: {topic}")
try:
output_path = await self.renderer.combine_videos_optimized(
topic, use_hardware_acceleration=self.config.use_gpu_acceleration
)
print(f"β
Combined video saved to: {output_path}")
except Exception as e:
print(f"β Error combining videos: {e}")
async def process_multiple_topics(self, topics_data: List[Dict],
only_plan: bool = False,
specific_scenes: List[int] = None) -> None:
"""Process multiple topics concurrently."""
topic_semaphore = asyncio.Semaphore(self.config.max_topic_concurrency)
async def process_single_topic(topic_data):
async with topic_semaphore:
topic = topic_data['theorem']
description = topic_data['description']
print(f"π― Processing topic: {topic}")
try:
await self.generate_video_pipeline(
topic, description, only_plan=only_plan,
specific_scenes=specific_scenes
)
print(f"β
Completed topic: {topic}")
except Exception as e:
print(f"β Error processing {topic}: {e}")
tasks = [process_single_topic(topic_data) for topic_data in topics_data]
await asyncio.gather(*tasks, return_exceptions=True)
def get_status_summary(self, topics_data: List[Dict]) -> None:
"""Print comprehensive status summary."""
print("\nπ Comprehensive Status Summary")
print("=" * 160)
all_statuses = [
self.scene_analyzer.analyze_scene_status(topic_data['theorem'])
for topic_data in topics_data
]
# Print header
print(f"{'Topic':<40} {'Outline':<8} {'Total':<8} {'Status (Plan/Code/Render)':<50} {'Combined':<10} {'Missing Components':<40}")
print("-" * 160)
# Print each topic status
for status in all_statuses:
scene_status_str = ""
for scene in status['scene_status']:
scene_str = (
("P" if scene['has_plan'] else "-") +
("C" if scene['has_code'] else "-") +
("R" if scene['has_render'] else "-") + " "
)
scene_status_str += scene_str
# Collect missing components
missing_components = self._format_missing_components(status['scene_status'])
print(f"{status['topic'][:37]+'...' if len(status['topic'])>37 else status['topic']:<40} "
f"{'β' if status['has_scene_outline'] else 'β':<8} "
f"{status['total_scenes']:<8} "
f"{scene_status_str[:47]+'...' if len(scene_status_str)>47 else scene_status_str:<50} "
f"{'β' if status['has_combined_video'] else 'β':<10} "
f"{missing_components[:37]+'...' if len(missing_components)>37 else missing_components:<40}")
# Print summary statistics
self._print_summary_statistics(all_statuses, len(topics_data))
def _format_missing_components(self, scene_status: List[Dict]) -> str:
"""Format missing components string."""
missing_plans = [str(s['scene_number']) for s in scene_status if not s['has_plan']]
missing_code = [str(s['scene_number']) for s in scene_status if not s['has_code']]
missing_renders = [str(s['scene_number']) for s in scene_status if not s['has_render']]
missing_str = []
if missing_plans:
missing_str.append(f"P:{','.join(missing_plans)}")
if missing_code:
missing_str.append(f"C:{','.join(missing_code)}")
if missing_renders:
missing_str.append(f"R:{','.join(missing_renders)}")
return ' '.join(missing_str)
def _print_summary_statistics(self, all_statuses: List[Dict], total_topics: int) -> None:
"""Print summary statistics."""
total_scenes = sum(status['total_scenes'] for status in all_statuses)
total_plans = sum(status['implementation_plans'] for status in all_statuses)
total_code = sum(status['code_files'] for status in all_statuses)
total_renders = sum(status['rendered_scenes'] for status in all_statuses)
total_combined = sum(1 for status in all_statuses if status['has_combined_video'])
print("\nπ Summary Statistics:")
print(f" Total topics: {total_topics}")
print(f" Total scenes: {total_scenes}")
print(f" Completion rates:")
print(f" Plans: {total_plans}/{total_scenes} ({total_plans/max(1,total_scenes)*100:.1f}%)")
print(f" Code: {total_code}/{total_scenes} ({total_code/max(1,total_scenes)*100:.1f}%)")
print(f" Renders: {total_renders}/{total_scenes} ({total_renders/max(1,total_scenes)*100:.1f}%)")
print(f" Combined videos: {total_combined}/{total_topics} ({total_combined/max(1,total_topics)*100:.1f}%)")
# Command-line interface
class VideoGeneratorCLI:
"""Command-line interface for video generation."""
@staticmethod
def create_argument_parser() -> argparse.ArgumentParser:
"""Create argument parser with all options."""
parser = argparse.ArgumentParser(description='Enhanced Manim Video Generator')
# Model configuration
parser.add_argument('--model', type=str, choices=allowed_models,
default='gemini/gemini-2.5-flash-preview-04-17', help='AI model to use')
parser.add_argument('--scene_model', type=str, choices=allowed_models,
help='Specific model for scene generation')
parser.add_argument('--helper_model', type=str, choices=allowed_models,
help='Helper model for additional tasks')
# Input/Output
parser.add_argument('--topic', type=str, help='Single topic to process')
parser.add_argument('--context', type=str, help='Context for the topic')
parser.add_argument('--theorems_path', type=str, help='Path to theorems JSON file')
parser.add_argument('--output_dir', type=str, default=Config.OUTPUT_DIR, help='Output directory')
# Processing options
parser.add_argument('--sample_size', type=int, help='Number of theorems to sample')
parser.add_argument('--scenes', nargs='+', type=int, help='Specific scenes to process')
parser.add_argument('--max_retries', type=int, default=5, help='Maximum retries for code generation')
# Mode flags
parser.add_argument('--only_plan', action='store_true', help='Only generate plans')
parser.add_argument('--only_render', action='store_true', help='Only render scenes')
parser.add_argument('--only_combine', action='store_true', help='Only combine videos')
parser.add_argument('--check_status', action='store_true', help='Check status of all topics')
# Performance options
parser.add_argument('--max_scene_concurrency', type=int, default=5, help='Max concurrent scenes')
parser.add_argument('--max_topic_concurrency', type=int, default=1, help='Max concurrent topics')
parser.add_argument('--max_concurrent_renders', type=int, default=4, help='Max concurrent renders')
parser.add_argument('--quality', choices=['preview', 'low', 'medium', 'high', 'production'],
default='medium', help='Render quality preset')
# Feature flags
parser.add_argument('--verbose', action='store_true', help='Verbose output')
parser.add_argument('--use_rag', action='store_true', help='Use RAG')
parser.add_argument('--use_context_learning', action='store_true', help='Use context learning')
parser.add_argument('--use_visual_fix_code', action='store_true', help='Use visual code fixing')
parser.add_argument('--use_langfuse', action='store_true', help='Enable Langfuse logging')
parser.add_argument('--enable_caching', action='store_true', default=True, help='Enable caching')
parser.add_argument('--use_gpu_acceleration', action='store_true', default=False, help='Use GPU acceleration')
parser.add_argument('--preview_mode', action='store_true', help='Enable preview mode')
# Paths
parser.add_argument('--chroma_db_path', type=str, default=Config.CHROMA_DB_PATH, help='ChromaDB path')
parser.add_argument('--manim_docs_path', type=str, default=Config.MANIM_DOCS_PATH, help='Manim docs path')
parser.add_argument('--context_learning_path', type=str, default=Config.CONTEXT_LEARNING_PATH, help='Context learning path')
parser.add_argument('--embedding_model', type=str, default=Config.EMBEDDING_MODEL, help='Embedding model')
return parser
@staticmethod
def create_config_from_args(args) -> VideoGenerationConfig:
"""Create configuration from command-line arguments."""
return VideoGenerationConfig(
planner_model=args.model,
scene_model=args.scene_model,
helper_model=args.helper_model,
output_dir=args.output_dir,
verbose=args.verbose,
use_rag=args.use_rag,
use_context_learning=args.use_context_learning,
context_learning_path=args.context_learning_path,
chroma_db_path=args.chroma_db_path,
manim_docs_path=args.manim_docs_path,
embedding_model=args.embedding_model,
use_visual_fix_code=args.use_visual_fix_code,
use_langfuse=args.use_langfuse,
max_scene_concurrency=args.max_scene_concurrency,
max_topic_concurrency=args.max_topic_concurrency,
max_retries=args.max_retries,
enable_caching=args.enable_caching,
default_quality=args.quality,
use_gpu_acceleration=args.use_gpu_acceleration,
preview_mode=args.preview_mode,
max_concurrent_renders=args.max_concurrent_renders
)
async def main():
"""Enhanced main function with improved error handling and performance."""
parser = VideoGeneratorCLI.create_argument_parser()
args = parser.parse_args()
# Create configuration
config = VideoGeneratorCLI.create_config_from_args(args)
# Initialize enhanced video generator
video_generator = EnhancedVideoGenerator(config)
try:
if args.theorems_path:
await handle_multiple_topics(video_generator, args)
elif args.topic and args.context:
await handle_single_topic(video_generator, args)
else:
print("β Please provide either (--theorems_path) or (--topic and --context)")
return
except Exception as e:
print(f"β Fatal error: {e}")
raise
async def handle_multiple_topics(video_generator: EnhancedVideoGenerator, args):
"""Handle processing of multiple topics."""
with open(args.theorems_path, "r") as f:
theorems = json.load(f)
if args.sample_size:
theorems = theorems[:args.sample_size]
if args.check_status:
video_generator.get_status_summary(theorems)
return
if args.only_combine:
for theorem in theorems:
await video_generator._combine_videos_optimized(theorem['theorem'])
else:
await video_generator.process_multiple_topics(
theorems,
only_plan=args.only_plan,
specific_scenes=args.scenes
)
async def handle_single_topic(video_generator: EnhancedVideoGenerator, args):
"""Handle processing of single topic."""
if args.only_combine:
await video_generator._combine_videos_optimized(args.topic)
else:
await video_generator.generate_video_pipeline(
args.topic,
args.context,
only_plan=args.only_plan
)
if __name__ == "__main__":
asyncio.run(main()) |