File size: 37,719 Bytes
6ec19f4 c83f37d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
import os
import gradio as gr
import asyncio
import json
import uuid
import threading
import time
from datetime import datetime
import logging
import traceback
import re
from typing import Dict, List, Optional
from mllm_tools.litellm import LiteLLMWrapper
from src.config.config import Config
from generate_video import EnhancedVideoGenerator, VideoGenerationConfig, allowed_models
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("gradio_app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Create necessary directories
os.makedirs("thumbnails", exist_ok=True)
# Global dictionary to track job status
job_status = {}
# Model descriptions for better user understanding
MODEL_DESCRIPTIONS = {
"gemini/gemini-1.5-pro-002": "π§ Advanced reasoning, excellent for complex mathematical concepts",
"gemini/gemini-2.5-flash-preview-04-17": "β‘ Fast processing, good for quick prototypes",
"openai/gpt-4": "π― Reliable and consistent, great for educational content",
"openai/gpt-4o": "π Latest OpenAI model with enhanced capabilities",
"anthropic/claude-3-5-sonnet-20241022": "π Excellent at detailed explanations and structured content",
"openrouter/openai/gpt-4o": "π GPT-4o via OpenRouter - Powerful and versatile",
"openrouter/openai/gpt-4o-mini": "π GPT-4o Mini via OpenRouter - Fast and cost-effective",
"openrouter/anthropic/claude-3.5-sonnet": "π Claude 3.5 Sonnet via OpenRouter - Excellent reasoning",
"openrouter/anthropic/claude-3-haiku": "π Claude 3 Haiku via OpenRouter - Quick responses",
"openrouter/google/gemini-pro-1.5": "π Gemini Pro 1.5 via OpenRouter - Google's advanced model",
"openrouter/deepseek/deepseek-chat": "π DeepSeek Chat via OpenRouter - Advanced conversation",
"openrouter/qwen/qwen-2.5-72b-instruct": "π Qwen 2.5 72B via OpenRouter - Alibaba's flagship model",
"openrouter/meta-llama/llama-3.1-8b-instruct:free": "π Llama 3.1 8B via OpenRouter - Free open source model",
"openrouter/microsoft/phi-3-mini-128k-instruct:free": "π Phi-3 Mini via OpenRouter - Free Microsoft model"
}
def cancel_job(job_id):
"""Cancel a running job."""
if job_id and job_id in job_status:
if job_status[job_id]['status'] in ['pending', 'initializing', 'planning', 'running']:
job_status[job_id]['status'] = 'cancelled'
job_status[job_id]['message'] = 'Job cancelled by user'
return f"Job {job_id} has been cancelled"
return "Job not found or cannot be cancelled"
def delete_job(job_id):
"""Delete a job from history."""
if job_id and job_id in job_status:
# Remove output files if they exist
job = job_status[job_id]
if job.get('output_file') and os.path.exists(job['output_file']):
try:
# Remove the entire output directory for this job
output_dir = os.path.dirname(job['output_file'])
import shutil
shutil.rmtree(output_dir, ignore_errors=True)
except Exception as e:
logger.error(f"Error removing output files: {e}")
# Remove thumbnail
if job.get('thumbnail') and os.path.exists(job['thumbnail']):
try:
os.remove(job['thumbnail'])
except Exception as e:
logger.error(f"Error removing thumbnail: {e}")
# Remove from job status
del job_status[job_id]
return f"Job {job_id} deleted successfully"
return "Job not found"
def get_job_statistics():
"""Get statistics about jobs."""
total_jobs = len(job_status)
completed_jobs = sum(1 for job in job_status.values() if job.get('status') == 'completed')
failed_jobs = sum(1 for job in job_status.values() if job.get('status') == 'failed')
running_jobs = sum(1 for job in job_status.values() if job.get('status') in ['pending', 'initializing', 'planning', 'running'])
return {
'total': total_jobs,
'completed': completed_jobs,
'failed': failed_jobs,
'running': running_jobs
}
def init_video_generator(params):
"""Initialize the EnhancedVideoGenerator with the given parameters."""
model_name = params.get('model', 'gemini/gemini-2.5-flash-preview-04-17')
helper_model_name = params.get('helper_model', model_name)
verbose = params.get('verbose', True) # Set verbose to True by default for better debugging
max_scene_concurrency = params.get('max_scene_concurrency', 1)
# Create configuration for the enhanced video generator
config = VideoGenerationConfig(
planner_model=model_name,
scene_model=model_name,
helper_model=helper_model_name,
output_dir=params.get('output_dir', Config.OUTPUT_DIR),
verbose=verbose,
use_rag=params.get('use_rag', False),
use_context_learning=params.get('use_context_learning', False),
context_learning_path=params.get('context_learning_path', Config.CONTEXT_LEARNING_PATH),
chroma_db_path=params.get('chroma_db_path', Config.CHROMA_DB_PATH),
manim_docs_path=params.get('manim_docs_path', Config.MANIM_DOCS_PATH),
embedding_model=params.get('embedding_model', Config.EMBEDDING_MODEL),
use_visual_fix_code=params.get('use_visual_fix_code', True), # Enable visual fix code by default
use_langfuse=params.get('use_langfuse', False),
max_scene_concurrency=max_scene_concurrency,
max_retries=params.get('max_retries', 3)
)
# Initialize EnhancedVideoGenerator
video_generator = EnhancedVideoGenerator(config)
return video_generator
async def process_video_generation(job_id, params):
"""Process video generation asynchronously."""
try:
# Update job status
job_status[job_id]['status'] = 'initializing'
job_status[job_id]['progress'] = 5
job_status[job_id]['message'] = 'Initializing video generator...'
# Initialize video generator
video_generator = init_video_generator(params)
# Extract video generation parameters
topic = params.get('topic')
description = params.get('description')
max_retries = int(params.get('max_retries', 3))
only_plan = params.get('only_plan', False)
# Log job start
logger.info(f"Starting job {job_id} for topic: {topic}")
job_status[job_id]['status'] = 'planning'
job_status[job_id]['progress'] = 10
job_status[job_id]['message'] = 'Planning video scenes...'
# Generate video pipeline
start_time = datetime.now()
logger.info(f"Running generate_video_pipeline for topic: {topic}")
# Create an event loop for the async process
def update_progress_callback(progress, message):
job_status[job_id]['progress'] = progress
job_status[job_id]['message'] = message
logger.info(f"Job {job_id} progress: {progress}% - {message}")
# Start a background task to periodically update progress
async def progress_update_task():
stages = [
(15, 'Creating scene outline...'),
(25, 'Generating implementation plans...'),
(35, 'Generating code for scenes...'),
(45, 'Compiling Manim code...'),
(60, 'Rendering scenes...'),
(80, 'Combining videos...'),
(90, 'Finalizing video...')
]
for progress, message in stages:
update_progress_callback(progress, message)
await asyncio.sleep(5) # Wait between updates
# Stop updating if job is complete or failed
if job_status[job_id]['status'] in ['completed', 'failed']:
break
# Start progress update task
progress_task = asyncio.create_task(progress_update_task())
# Run the main video generation task with detailed logging
try:
logger.info(f"Starting video generation pipeline for job {job_id}")
update_progress_callback(15, 'Starting video generation pipeline...')
await video_generator.generate_video_pipeline(
topic=topic,
description=description,
only_plan=only_plan
)
logger.info(f"Video generation pipeline completed for job {job_id}")
except Exception as e:
logger.error(f"Error in video generation pipeline for job {job_id}: {str(e)}")
logger.error(traceback.format_exc())
raise
# Cancel progress update task
if not progress_task.done():
progress_task.cancel()
# Calculate processing time
end_time = datetime.now()
processing_time = (end_time - start_time).total_seconds()
# Get output file path
file_prefix = topic.lower()
file_prefix = re.sub(r'[^a-z0-9_]+', '_', file_prefix)
output_file = os.path.join(
params.get('output_dir', Config.OUTPUT_DIR),
file_prefix,
f"{file_prefix}_combined.mp4"
)
# Check if output file actually exists
if not os.path.exists(output_file):
alternative_output = None
# Look for any MP4 files that might have been generated
scene_dir = os.path.join(params.get('output_dir', Config.OUTPUT_DIR), file_prefix)
if os.path.exists(scene_dir):
for root, dirs, files in os.walk(scene_dir):
for file in files:
if file.endswith('.mp4'):
alternative_output = os.path.join(root, file)
logger.info(f"Combined video not found, but found alternative: {alternative_output}")
break
if alternative_output:
break
if alternative_output:
output_file = alternative_output
else:
logger.error(f"No video output file found for job {job_id}")
raise Exception("No video output was generated. Check Manim execution logs.")
# Create a thumbnail from the video if it exists
thumbnail_path = None
if os.path.exists(output_file):
thumbnail_path = os.path.join("thumbnails", f"{job_id}.jpg")
try:
import subprocess
result = subprocess.run([
'ffmpeg', '-i', output_file,
'-ss', '00:00:05', '-frames:v', '1',
thumbnail_path
], capture_output=True, text=True)
if result.returncode != 0:
logger.error(f"Error creating thumbnail: {result.stderr}")
thumbnail_path = None
except Exception as e:
logger.error(f"Error creating thumbnail: {str(e)}")
thumbnail_path = None
# Get scene snapshots
scene_snapshots = []
scene_dir = os.path.join(params.get('output_dir', Config.OUTPUT_DIR), file_prefix)
if os.path.exists(scene_dir):
for i in range(1, 10): # Check up to 10 possible scenes
scene_snapshot_dir = os.path.join(scene_dir, f"scene{i}")
if os.path.exists(scene_snapshot_dir):
img_files = [f for f in os.listdir(scene_snapshot_dir) if f.endswith('.png')]
if img_files:
img_path = os.path.join(scene_snapshot_dir, img_files[-1]) # Get the last image
scene_snapshots.append(img_path)
# Update job status to completed
job_status[job_id].update({
'status': 'completed',
'progress': 100,
'message': 'Video generation completed',
'output_file': output_file if os.path.exists(output_file) else None,
'processing_time': processing_time,
'thumbnail': thumbnail_path,
'scene_snapshots': scene_snapshots
})
logger.info(f"Job {job_id} completed successfully in {processing_time:.2f} seconds")
except Exception as e:
# Handle exceptions
error_msg = str(e)
stack_trace = traceback.format_exc()
logger.error(f"Error in job {job_id}: {error_msg}\n{stack_trace}")
job_status[job_id].update({
'status': 'failed',
'error': error_msg,
'stack_trace': stack_trace,
'message': f'Error: {error_msg[:100]}...' if len(error_msg) > 100 else f'Error: {error_msg}'
})
def start_async_job(job_id, params):
"""Start an async job in a separate thread."""
def run_async():
asyncio.run(process_video_generation(job_id, params))
thread = threading.Thread(target=run_async)
thread.daemon = True
thread.start()
return thread
def submit_job(topic, description, model, helper_model, max_retries, use_rag, use_visual_fix_code, temperature, use_context_learning, verbose, max_scene_concurrency):
"""Submit a new video generation job."""
# Input validation
if not topic.strip():
return "β Error: Topic is required", None, gr.update(visible=False)
if not description.strip():
return "β Error: Description is required", None, gr.update(visible=False)
if len(topic.strip()) < 3:
return "β Error: Topic must be at least 3 characters long", None, gr.update(visible=False)
if len(description.strip()) < 10:
return "β Error: Description must be at least 10 characters long", None, gr.update(visible=False)
try:
# Generate job ID
job_id = str(uuid.uuid4())
# Initialize job status
job_status[job_id] = {
'id': job_id,
'status': 'pending',
'topic': topic,
'description': description,
'model': model,
'start_time': datetime.now().isoformat(),
'progress': 0,
'message': 'Job submitted, waiting to start...'
}
# Prepare parameters
params = {
'topic': topic,
'description': description,
'model': model,
'helper_model': helper_model,
'max_retries': max_retries,
'use_rag': use_rag,
'use_visual_fix_code': use_visual_fix_code,
'temperature': temperature,
'use_context_learning': use_context_learning,
'verbose': verbose,
'max_scene_concurrency': max_scene_concurrency,
'output_dir': Config.OUTPUT_DIR,
}
# Start job asynchronously
start_async_job(job_id, params)
return f"β
Job submitted successfully. Job ID: {job_id}", job_id, gr.update(visible=True)
except Exception as e:
logger.error(f"Error submitting job: {str(e)}")
return f"β Error: {str(e)}", None, gr.update(visible=False)
def check_job_status(job_id):
"""Check the status of a job."""
if not job_id or job_id not in job_status:
return {"status": "not_found", "message": "Job not found"}
return job_status[job_id]
def get_video_details(job_id):
"""Get details of a completed video job."""
if not job_id or job_id not in job_status:
return None, None, None, [], "Job not found"
job = job_status[job_id]
if job['status'] != 'completed':
return None, None, None, [], f"Video not ready. Current status: {job['status']}"
# Get video path, processing time, thumbnail and scene snapshots
video_path = job.get('output_file')
processing_time = job.get('processing_time', 0)
thumbnail = job.get('thumbnail')
scene_snapshots = job.get('scene_snapshots', [])
if not video_path or not os.path.exists(video_path):
return None, None, None, [], "Video file not found"
return video_path, processing_time, thumbnail, scene_snapshots, None
def get_job_list():
"""Get a list of all jobs."""
job_list = []
for job_id, job in job_status.items():
job_list.append({
'id': job_id,
'topic': job.get('topic', 'Unknown'),
'status': job.get('status', 'unknown'),
'start_time': job.get('start_time', ''),
'progress': job.get('progress', 0),
'message': job.get('message', '')
})
# Sort by start time, most recent first
job_list.sort(key=lambda x: x.get('start_time', ''), reverse=True)
return job_list
def format_status_message(job):
"""Format status message for display."""
if not job:
return "No job selected"
status = job.get('status', 'unknown')
progress = job.get('progress', 0)
message = job.get('message', '')
status_emoji = {
'pending': 'β³',
'initializing': 'π',
'planning': 'π§ ',
'running': 'βοΈ',
'completed': 'β
',
'failed': 'β',
'unknown': 'β'
}.get(status, 'β')
return f"{status_emoji} Status: {status.title()} ({progress}%)\n{message}"
def update_status_display(job_id):
"""Update the status display for a job."""
if not job_id:
return ("No job selected",
gr.update(value=None),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value=[]),
gr.update(visible=False),
gr.update(visible=False))
job = check_job_status(job_id)
status_message = format_status_message(job)
# Check if the job is completed to show the video
if job.get('status') == 'completed' and job.get('output_file') and os.path.exists(job.get('output_file')):
video_path = job.get('output_file')
video_vis = True
thumbnail = job.get('thumbnail')
scene_snapshots = job.get('scene_snapshots', [])
processing_time = job.get('processing_time', 0)
return (status_message,
gr.update(value=video_path),
gr.update(visible=video_vis),
gr.update(visible=thumbnail is not None, value=thumbnail),
gr.update(value=scene_snapshots),
gr.update(visible=True, value=f"β±οΈ Processing Time: {processing_time:.2f} seconds"),
gr.update(visible=job.get('status') in ['pending', 'initializing', 'planning', 'running']))
return (status_message,
gr.update(value=None),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value=[]),
gr.update(visible=False),
gr.update(visible=job.get('status') in ['pending', 'initializing', 'planning', 'running']))
# Create Gradio interface
with gr.Blocks(
title="Theory2Manim Video Generator",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter")
),
css="""
.main-header {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 2rem;
border-radius: 1rem;
margin-bottom: 2rem;
}
.status-card {
border: 1px solid #e1e5e9;
border-radius: 0.5rem;
padding: 1rem;
background: #f8f9fa;
}
.metric-card {
border: 1px solid #e1e5e9;
border-radius: 0.5rem;
padding: 1rem;
text-align: center;
background: white;
}
.job-actions {
gap: 0.5rem;
}
"""
) as app:
# Header
with gr.Row():
with gr.Column():
gr.HTML("""
<div class="main-header">
<h1>π¬ Theory2Manim Video Generator</h1>
<p>Transform mathematical and scientific concepts into engaging educational videos</p>
</div>
""")
# Statistics Dashboard
with gr.Row():
stats_total = gr.Textbox(label="π Total Jobs", interactive=False, scale=1)
stats_completed = gr.Textbox(label="β
Completed", interactive=False, scale=1)
stats_running = gr.Textbox(label="βοΈ Running", interactive=False, scale=1)
stats_failed = gr.Textbox(label="β Failed", interactive=False, scale=1)
with gr.Tab("π₯ Generate Video"):
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("### π Content Configuration")
topic_input = gr.Textbox(
label="π Topic",
placeholder="e.g., Fourier Transform, Calculus Derivatives, Quantum Mechanics",
info="Enter the main topic for your educational video"
)
description_input = gr.Textbox(
label="π Detailed Description",
placeholder="Provide a comprehensive description of what you want the video to cover, including specific concepts, examples, and target audience level...",
lines=6,
info="The more detailed your description, the better the AI can generate relevant content"
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### βοΈ AI Model Settings")
model_input = gr.Dropdown(
label="π€ Primary AI Model",
choices=list(MODEL_DESCRIPTIONS.keys()),
value="gemini/gemini-2.5-flash-preview-04-17",
info="Choose the AI model for content generation"
)
model_description = gr.Markdown(MODEL_DESCRIPTIONS["gemini/gemini-2.5-flash-preview-04-17"])
helper_model_input = gr.Dropdown(
label="π§ Helper Model",
choices=list(MODEL_DESCRIPTIONS.keys()),
value="gemini/gemini-2.5-flash-preview-04-17",
info="Model for auxiliary tasks"
)
temperature_input = gr.Slider(
label="π‘οΈ Creativity (Temperature)",
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
info="Lower = more focused, Higher = more creative"
)
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown("### π§ Advanced Settings")
with gr.Row():
max_retries_input = gr.Slider(
label="π Max Retries",
minimum=1,
maximum=10,
value=3,
step=1,
info="Number of retry attempts for failed operations"
)
max_scene_concurrency_input = gr.Slider(
label="β‘ Scene Concurrency",
minimum=1,
maximum=5,
value=1,
step=1,
info="Number of scenes to process simultaneously"
)
with gr.Row():
use_rag_input = gr.Checkbox(
label="π Use RAG (Retrieval Augmented Generation)",
value=False,
info="Enhance generation with relevant knowledge retrieval"
)
use_visual_fix_code_input = gr.Checkbox(
label="π¨ Use Visual Code Fixing",
value=True,
info="Automatically fix visual rendering issues"
)
use_context_learning_input = gr.Checkbox(
label="π§ Use Context Learning",
value=False,
info="Learn from previous successful videos"
)
verbose_input = gr.Checkbox(
label="π Verbose Logging",
value=True,
info="Enable detailed logging for debugging"
)
with gr.Row():
with gr.Column(scale=3):
submit_btn = gr.Button("π Generate Video", variant="primary", size="lg")
with gr.Column(scale=1):
clear_form_btn = gr.Button("π§Ή Clear Form", variant="secondary")
result_text = gr.Textbox(label="π Status", interactive=False)
job_id_output = gr.Textbox(label="Job ID", visible=False)
with gr.Column(visible=False) as status_container:
with gr.Group():
gr.Markdown("### π Job Progress")
with gr.Row():
with gr.Column(scale=3):
status_text = gr.Textbox(label="Current Status", interactive=False, elem_classes=["status-card"])
processing_time_text = gr.Textbox(label="Processing Information", visible=False, interactive=False)
with gr.Column(scale=1):
with gr.Group():
refresh_btn = gr.Button("π Refresh Status", variant="secondary")
cancel_btn = gr.Button("βΉοΈ Cancel Job", variant="stop", visible=False)
with gr.Row():
with gr.Column(scale=2):
video_output = gr.Video(
label="π¬ Generated Video",
interactive=False,
visible=False,
show_download_button=True
)
thumbnail_preview = gr.Image(
label="πΌοΈ Video Thumbnail",
visible=False,
height=200
)
with gr.Column(scale=1):
scene_gallery = gr.Gallery(
label="π¨ Scene Previews",
columns=2,
object_fit="contain",
height=400,
show_download_button=True
)
with gr.Tab("π Job History & Management"):
with gr.Row():
with gr.Column(scale=3):
refresh_jobs_btn = gr.Button("π Refresh Job List", variant="secondary")
with gr.Column(scale=1):
clear_completed_btn = gr.Button("π§Ή Clear Completed Jobs", variant="secondary")
clear_all_btn = gr.Button("ποΈ Clear All Jobs", variant="stop")
jobs_table = gr.Dataframe(
headers=["ID", "Topic", "Status", "Progress (%)", "Start Time", "Message"],
datatype=["str", "str", "str", "number", "str", "str"],
interactive=False,
label="π Job History",
wrap=True
)
with gr.Row():
with gr.Column():
select_job_btn = gr.Button("ποΈ View Selected Job", variant="primary")
selected_job_id = gr.Textbox(label="Selected Job ID", visible=False)
with gr.Column():
delete_job_btn = gr.Button("ποΈ Delete Selected Job", variant="stop")
download_job_btn = gr.Button("πΎ Download Job Results", variant="secondary")
with gr.Tab("βΉοΈ Help & Documentation"):
gr.Markdown("""
## π― How to Use Theory2Manim
### π Step 1: Content Planning
- **Topic**: Enter a clear, specific topic (e.g., "Linear Algebra: Matrix Multiplication")
- **Description**: Provide detailed context about what you want covered:
- Target audience level (beginner, intermediate, advanced)
- Specific concepts to include
- Examples or applications to demonstrate
- Preferred video length or depth
### π€ Step 2: Model Selection
- **Gemini 1.5 Pro**: Best for complex mathematical reasoning
- **Gemini 2.0 Flash**: Fastest processing, good for simple topics
- **GPT-4**: Reliable and consistent output
- **Claude**: Excellent for detailed explanations
### βοΈ Step 3: Advanced Settings
- **Temperature**: 0.3-0.5 for factual content, 0.7-0.9 for creative explanations
- **RAG**: Enable for topics requiring external knowledge
- **Visual Code Fixing**: Recommended for better video quality
- **Context Learning**: Use previous successful videos as examples
### π Step 4: Monitor Progress
- Check the **Job History** tab to monitor all your video generation tasks
- Use **Refresh Status** to get real-time updates
- **Cancel** jobs if needed during processing
### π¬ Step 5: Review Results
- Preview generated videos directly in the interface
- View scene breakdowns and thumbnails
- Download videos for offline use
## π‘ Tips for Best Results
1. **Be Specific**: Detailed descriptions lead to better videos
2. **Start Simple**: Try basic topics first to understand the system
3. **Use Examples**: Mention specific examples you want included
4. **Set Context**: Specify the educational level and background needed
5. **Review Settings**: Adjust temperature and models based on your content type
## π§ Troubleshooting
- **Job Stuck**: Try canceling and resubmitting with different settings
- **Poor Quality**: Use higher temperature or enable Visual Code Fixing
- **Missing Content**: Provide more detailed descriptions
- **Errors**: Check the verbose logs in the status messages
""")
# Event handlers with improved functionality
def clear_form():
return ("", "", 0.7, False, True, False, True, 1, 1, "Form cleared! Ready for new input.")
def update_model_description(model):
return MODEL_DESCRIPTIONS.get(model, "No description available")
def update_stats():
stats = get_job_statistics()
return (f"{stats['total']}",
f"{stats['completed']}",
f"{stats['running']}",
f"{stats['failed']}")
def clear_completed_jobs():
completed_jobs = [job_id for job_id, job in job_status.items()
if job.get('status') == 'completed']
for job_id in completed_jobs:
delete_job(job_id)
return f"Cleared {len(completed_jobs)} completed jobs"
def clear_all_jobs():
count = len(job_status)
job_status.clear()
return f"Cleared all {count} jobs"
# Connect event handlers
model_input.change(
fn=update_model_description,
inputs=[model_input],
outputs=[model_description]
)
clear_form_btn.click(
fn=clear_form,
outputs=[topic_input, description_input, temperature_input,
use_rag_input, use_visual_fix_code_input, use_context_learning_input,
verbose_input, max_retries_input, max_scene_concurrency_input, result_text]
)
submit_btn.click(
fn=submit_job,
inputs=[
topic_input, description_input, model_input, helper_model_input, max_retries_input,
use_rag_input, use_visual_fix_code_input, temperature_input, use_context_learning_input,
verbose_input, max_scene_concurrency_input
],
outputs=[result_text, job_id_output, status_container]
).then(
fn=update_status_display,
inputs=[job_id_output],
outputs=[status_text, video_output, video_output, thumbnail_preview, scene_gallery, processing_time_text, cancel_btn]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
refresh_btn.click(
fn=update_status_display,
inputs=[job_id_output],
outputs=[status_text, video_output, video_output, thumbnail_preview, scene_gallery, processing_time_text, cancel_btn]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
cancel_btn.click(
fn=cancel_job,
inputs=[job_id_output],
outputs=[result_text]
).then(
fn=update_status_display,
inputs=[job_id_output],
outputs=[status_text, video_output, video_output, thumbnail_preview, scene_gallery, processing_time_text, cancel_btn]
)
# Job history tab functions
def load_job_list():
jobs = get_job_list()
rows = []
for job in jobs:
start_time = job.get('start_time', '')
if start_time:
try:
dt = datetime.fromisoformat(start_time.replace('Z', '+00:00'))
formatted_time = dt.strftime('%Y-%m-%d %H:%M:%S')
except:
formatted_time = start_time
else:
formatted_time = 'Unknown'
rows.append([
job['id'][:8] + '...',
job['topic'][:50] + ('...' if len(job['topic']) > 50 else ''),
job['status'].title(),
job['progress'],
formatted_time,
job['message'][:100] + ('...' if len(job['message']) > 100 else '')
])
return rows
def select_job(evt: gr.EventData):
if not evt:
return "", "No job selected"
selected_row = evt.index[0] if hasattr(evt, 'index') and evt.index else 0
jobs = get_job_list()
if selected_row < len(jobs):
return jobs[selected_row]['id'], f"Selected job: {jobs[selected_row]['topic']}"
return "", "No job selected"
def delete_selected_job(job_id):
if job_id:
result = delete_job(job_id)
return result, ""
return "No job selected", ""
refresh_jobs_btn.click(
fn=load_job_list,
outputs=[jobs_table]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
jobs_table.select(
fn=select_job,
outputs=[selected_job_id, result_text]
)
select_job_btn.click(
fn=lambda x: gr.update(visible=True) if x else gr.update(visible=False),
inputs=[selected_job_id],
outputs=[status_container]
).then(
fn=update_status_display,
inputs=[selected_job_id],
outputs=[status_text, video_output, video_output, thumbnail_preview, scene_gallery, processing_time_text, cancel_btn]
)
delete_job_btn.click(
fn=delete_selected_job,
inputs=[selected_job_id],
outputs=[result_text, selected_job_id]
).then(
fn=load_job_list,
outputs=[jobs_table]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
clear_completed_btn.click(
fn=clear_completed_jobs,
outputs=[result_text]
).then(
fn=load_job_list,
outputs=[jobs_table]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
clear_all_btn.click(
fn=clear_all_jobs,
outputs=[result_text]
).then(
fn=load_job_list,
outputs=[jobs_table]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
# Set up polling for status updates
app.load(
fn=load_job_list,
outputs=[jobs_table]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
# Load on app start
def on_app_start():
if not os.path.exists("thumbnails"):
os.makedirs("thumbnails", exist_ok=True)
return "π¬ Welcome to Theory2Manim Video Generator! Ready to create amazing educational videos."
app.load(
fn=on_app_start,
outputs=[result_text]
)
if __name__ == "__main__":
import os
app.queue().launch(
server_name=os.getenv("GRADIO_SERVER_NAME", "0.0.0.0"),
server_port=int(os.getenv("GRADIO_SERVER_PORT", 7860)),
share=False
) |