File size: 30,344 Bytes
9b5ca29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
import os
import re
import json
import glob
from typing import List, Optional, Dict, Tuple
import uuid
import asyncio
import time
from concurrent.futures import ThreadPoolExecutor
from functools import lru_cache
import aiofiles
from mllm_tools.utils import _prepare_text_inputs
from src.utils.utils import extract_xml
from task_generator import (
get_prompt_scene_plan,
get_prompt_scene_vision_storyboard,
get_prompt_scene_technical_implementation,
get_prompt_scene_animation_narration,
get_prompt_context_learning_scene_plan,
get_prompt_context_learning_vision_storyboard,
get_prompt_context_learning_technical_implementation,
get_prompt_context_learning_animation_narration,
get_prompt_context_learning_code
)
from src.rag.rag_integration import RAGIntegration
class EnhancedVideoPlanner:
"""Enhanced video planner with improved parallelization and performance."""
def __init__(self, planner_model, helper_model=None, output_dir="output",
print_response=False, use_context_learning=False,
context_learning_path="data/context_learning", use_rag=False,
session_id=None, chroma_db_path="data/rag/chroma_db",
manim_docs_path="data/rag/manim_docs",
embedding_model="text-embedding-ada-002", use_langfuse=True,
max_scene_concurrency=5, max_step_concurrency=3, enable_caching=True):
self.planner_model = planner_model
self.helper_model = helper_model if helper_model is not None else planner_model
self.output_dir = output_dir
self.print_response = print_response
self.use_context_learning = use_context_learning
self.context_learning_path = context_learning_path
self.use_rag = use_rag
self.session_id = session_id
self.enable_caching = enable_caching
# Enhanced concurrency control
self.max_scene_concurrency = max_scene_concurrency
self.max_step_concurrency = max_step_concurrency
self.scene_semaphore = asyncio.Semaphore(max_scene_concurrency)
self.step_semaphore = asyncio.Semaphore(max_step_concurrency)
# Thread pool for I/O operations
self.thread_pool = ThreadPoolExecutor(max_workers=4)
# Cache for prompts and examples
self._context_cache = {}
self._prompt_cache = {}
# Initialize context examples with caching
self._initialize_context_examples()
# Initialize RAG with enhanced settings
self.rag_integration = None
self.relevant_plugins = []
if use_rag:
self.rag_integration = RAGIntegration(
helper_model=helper_model,
output_dir=output_dir,
chroma_db_path=chroma_db_path,
manim_docs_path=manim_docs_path,
embedding_model=embedding_model,
use_langfuse=use_langfuse,
session_id=session_id
)
def _initialize_context_examples(self):
"""Initialize and cache context examples for faster access."""
example_types = [
'scene_plan', 'scene_vision_storyboard', 'technical_implementation',
'scene_animation_narration', 'code'
]
if self.use_context_learning:
for example_type in example_types:
self._context_cache[example_type] = self._load_context_examples(example_type)
else:
for example_type in example_types:
self._context_cache[example_type] = None
@lru_cache(maxsize=128)
def _get_cached_prompt(self, prompt_type: str, *args) -> str:
"""Get cached prompt to avoid regeneration."""
prompt_generators = {
'scene_plan': get_prompt_scene_plan,
'scene_vision_storyboard': get_prompt_scene_vision_storyboard,
'scene_technical_implementation': get_prompt_scene_technical_implementation,
'scene_animation_narration': get_prompt_scene_animation_narration
}
generator = prompt_generators.get(prompt_type)
if generator:
return generator(*args)
return ""
async def _async_file_write(self, file_path: str, content: str):
"""Asynchronous file writing for better performance."""
async with aiofiles.open(file_path, 'w', encoding='utf-8') as f:
await f.write(content)
async def _async_file_read(self, file_path: str) -> str:
"""Asynchronous file reading."""
try:
async with aiofiles.open(file_path, 'r', encoding='utf-8') as f:
return await f.read()
except FileNotFoundError:
return None
async def _ensure_directories(self, *paths):
"""Asynchronously ensure directories exist."""
loop = asyncio.get_event_loop()
for path in paths:
await loop.run_in_executor(self.thread_pool, lambda p: os.makedirs(p, exist_ok=True), path)
def _load_context_examples(self, example_type: str) -> str:
"""Load context learning examples with improved performance."""
if example_type in self._context_cache:
return self._context_cache[example_type]
examples = []
file_patterns = {
'scene_plan': '*_scene_plan.txt',
'scene_vision_storyboard': '*_scene_vision_storyboard.txt',
'technical_implementation': '*_technical_implementation.txt',
'scene_animation_narration': '*_scene_animation_narration.txt',
'code': '*.py'
}
pattern = file_patterns.get(example_type)
if not pattern:
return None
# Use glob for faster file discovery
search_pattern = os.path.join(self.context_learning_path, "**", pattern)
for example_file in glob.glob(search_pattern, recursive=True):
try:
with open(example_file, 'r', encoding='utf-8') as f:
content = f.read()
examples.append(f"# Example from {os.path.basename(example_file)}\n{content}\n")
except Exception as e:
print(f"Warning: Could not load example {example_file}: {e}")
if examples:
formatted_examples = self._format_examples(example_type, examples)
self._context_cache[example_type] = formatted_examples
return formatted_examples
return None
def _format_examples(self, example_type: str, examples: List[str]) -> str:
"""Format examples using the appropriate template."""
templates = {
'scene_plan': get_prompt_context_learning_scene_plan,
'scene_vision_storyboard': get_prompt_context_learning_vision_storyboard,
'technical_implementation': get_prompt_context_learning_technical_implementation,
'scene_animation_narration': get_prompt_context_learning_animation_narration,
'code': get_prompt_context_learning_code
}
template = templates.get(example_type)
if template:
return template(examples="\n".join(examples))
return None
async def generate_scene_outline(self, topic: str, description: str, session_id: str) -> str:
"""Enhanced scene outline generation with async I/O."""
start_time = time.time()
# Detect relevant plugins upfront if RAG is enabled
if self.use_rag and self.rag_integration:
plugin_detection_task = asyncio.create_task(
self._detect_plugins_async(topic, description)
)
# Prepare prompt with cached examples
prompt = self._get_cached_prompt('scene_plan', topic, description)
if self.use_context_learning and self._context_cache.get('scene_plan'):
prompt += f"\n\nHere are some example scene plans for reference:\n{self._context_cache['scene_plan']}"
# Wait for plugin detection if enabled
if self.use_rag and self.rag_integration:
self.relevant_plugins = await plugin_detection_task
print(f"β
Detected relevant plugins: {self.relevant_plugins}")
# Generate plan using planner model
response_text = self.planner_model(
_prepare_text_inputs(prompt),
metadata={
"generation_name": "scene_outline",
"tags": [topic, "scene-outline"],
"session_id": session_id
}
)
# Extract scene outline with improved error handling
scene_outline = self._extract_scene_outline_robust(response_text)
# Async file operations
file_prefix = re.sub(r'[^a-z0-9_]+', '_', topic.lower())
output_dir = os.path.join(self.output_dir, file_prefix)
await self._ensure_directories(output_dir)
file_path = os.path.join(output_dir, f"{file_prefix}_scene_outline.txt")
await self._async_file_write(file_path, scene_outline)
elapsed_time = time.time() - start_time
print(f"Scene outline generated in {elapsed_time:.2f}s - saved to {file_prefix}_scene_outline.txt")
return scene_outline
async def _detect_plugins_async(self, topic: str, description: str) -> List[str]:
"""Asynchronously detect relevant plugins."""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(
self.thread_pool,
lambda: self.rag_integration.detect_relevant_plugins(topic, description) or []
)
async def _generate_scene_step_parallel(self, step_name: str, prompt_func,
scene_trace_id: str, topic: str,
scene_number: int, session_id: str,
output_path: str, *args) -> Tuple[str, str]:
"""Generate a single scene step with async operations."""
async with self.step_semaphore: # Control step-level concurrency
# Check cache first if enabled
if self.enable_caching:
cached_content = await self._async_file_read(output_path)
if cached_content:
print(f"Using cached {step_name} for scene {scene_number}")
return cached_content, output_path
print(f"π Generating {step_name} for scene {scene_number}")
start_time = time.time()
# Generate prompt
prompt = prompt_func(*args)
# Add context examples if available
example_type = step_name.replace('_plan', '').replace('scene_', '')
if self._context_cache.get(example_type):
prompt += f"\n\nHere are some example {step_name}s:\n{self._context_cache[example_type]}"
# Add RAG context if enabled
if self.use_rag and self.rag_integration:
rag_queries = await self._generate_rag_queries_async(
step_name, args, scene_trace_id, topic, scene_number, session_id
)
if rag_queries:
retrieved_docs = self.rag_integration.get_relevant_docs(
rag_queries=rag_queries,
scene_trace_id=scene_trace_id,
topic=topic,
scene_number=scene_number
)
prompt += f"\n\n{retrieved_docs}"
# Generate content
response = self.planner_model(
_prepare_text_inputs(prompt),
metadata={
"generation_name": step_name,
"trace_id": scene_trace_id,
"tags": [topic, f"scene{scene_number}"],
"session_id": session_id
}
)
# Extract content using step-specific patterns
extraction_patterns = {
'scene_vision_storyboard': r'(<SCENE_VISION_STORYBOARD_PLAN>.*?</SCENE_VISION_STORYBOARD_PLAN>)',
'scene_technical_implementation': r'(<SCENE_TECHNICAL_IMPLEMENTATION_PLAN>.*?</SCENE_TECHNICAL_IMPLEMENTATION_PLAN>)',
'scene_animation_narration': r'(<SCENE_ANIMATION_NARRATION_PLAN>.*?</SCENE_ANIMATION_NARRATION_PLAN>)'
}
pattern = extraction_patterns.get(step_name)
if pattern:
match = re.search(pattern, response, re.DOTALL)
content = match.group(1) if match else response
else:
content = response
# Async file save
await self._async_file_write(output_path, content)
elapsed_time = time.time() - start_time
print(f"{step_name} for scene {scene_number} completed in {elapsed_time:.2f}s")
return content, output_path
async def _generate_rag_queries_async(self, step_name: str, args: tuple,
scene_trace_id: str, topic: str,
scene_number: int, session_id: str) -> List[Dict]:
"""Generate RAG queries asynchronously based on step type."""
query_generators = {
'scene_vision_storyboard': self.rag_integration._generate_rag_queries_storyboard,
'scene_technical_implementation': self.rag_integration._generate_rag_queries_technical,
'scene_animation_narration': self.rag_integration._generate_rag_queries_narration
}
generator = query_generators.get(step_name)
if not generator:
return []
# Map args to appropriate parameters based on step
if step_name == 'scene_vision_storyboard':
scene_plan = args[3] if len(args) > 3 else ""
return generator(
scene_plan=scene_plan,
scene_trace_id=scene_trace_id,
topic=topic,
scene_number=scene_number,
session_id=session_id,
relevant_plugins=self.relevant_plugins
)
elif step_name == 'scene_technical_implementation':
storyboard = args[4] if len(args) > 4 else ""
return generator(
storyboard=storyboard,
scene_trace_id=scene_trace_id,
topic=topic,
scene_number=scene_number,
session_id=session_id,
relevant_plugins=self.relevant_plugins
)
elif step_name == 'scene_animation_narration':
storyboard = args[4] if len(args) > 4 else ""
return generator(
storyboard=storyboard,
scene_trace_id=scene_trace_id,
topic=topic,
scene_number=scene_number,
session_id=session_id,
relevant_plugins=self.relevant_plugins
)
return []
async def _generate_scene_implementation_single_enhanced(self, topic: str, description: str,
scene_outline_i: str, scene_number: int,
file_prefix: str, session_id: str,
scene_trace_id: str) -> str:
"""Enhanced single scene implementation with parallel steps."""
start_time = time.time()
print(f"Starting scene {scene_number} implementation (parallel processing)")
# Setup directories
scene_dir = os.path.join(self.output_dir, file_prefix, f"scene{scene_number}")
subplan_dir = os.path.join(scene_dir, "subplans")
await self._ensure_directories(scene_dir, subplan_dir)
# Save scene trace ID
trace_id_file = os.path.join(subplan_dir, "scene_trace_id.txt")
await self._async_file_write(trace_id_file, scene_trace_id)
# Define all steps with their configurations
steps_config = [
{
'name': 'scene_vision_storyboard',
'prompt_func': get_prompt_scene_vision_storyboard,
'args': (scene_number, topic, description, scene_outline_i, self.relevant_plugins),
'output_path': os.path.join(subplan_dir, f"{file_prefix}_scene{scene_number}_vision_storyboard_plan.txt")
}
]
# Execute Step 1: Vision Storyboard (sequential dependency)
vision_storyboard_content, _ = await self._generate_scene_step_parallel(
steps_config[0]['name'],
steps_config[0]['prompt_func'],
scene_trace_id,
topic,
scene_number,
session_id,
steps_config[0]['output_path'],
*steps_config[0]['args']
)
# Prepare Step 2 and 3 for parallel execution (both depend on Step 1)
remaining_steps = [
{
'name': 'scene_technical_implementation',
'prompt_func': get_prompt_scene_technical_implementation,
'args': (scene_number, topic, description, scene_outline_i, vision_storyboard_content, self.relevant_plugins),
'output_path': os.path.join(subplan_dir, f"{file_prefix}_scene{scene_number}_technical_implementation_plan.txt")
},
{
'name': 'scene_animation_narration',
'prompt_func': get_prompt_scene_animation_narration,
'args': (scene_number, topic, description, scene_outline_i, vision_storyboard_content, None, self.relevant_plugins),
'output_path': os.path.join(subplan_dir, f"{file_prefix}_scene{scene_number}_animation_narration_plan.txt")
}
]
# Execute Steps 2 and 3 in parallel
parallel_tasks = []
for step_config in remaining_steps:
task = asyncio.create_task(
self._generate_scene_step_parallel(
step_config['name'],
step_config['prompt_func'],
scene_trace_id,
topic,
scene_number,
session_id,
step_config['output_path'],
*step_config['args']
)
)
parallel_tasks.append(task)
# Wait for parallel tasks to complete
parallel_results = await asyncio.gather(*parallel_tasks)
technical_implementation_content = parallel_results[0][0]
animation_narration_content = parallel_results[1][0]
# Update animation narration args with technical implementation and regenerate if needed
if technical_implementation_content:
updated_animation_args = (
scene_number, topic, description, scene_outline_i,
vision_storyboard_content, technical_implementation_content, self.relevant_plugins
)
animation_narration_content, _ = await self._generate_scene_step_parallel(
'scene_animation_narration',
get_prompt_scene_animation_narration,
scene_trace_id,
topic,
scene_number,
session_id,
remaining_steps[1]['output_path'],
*updated_animation_args
)
# Combine all implementation plans
implementation_plan = (
f"{vision_storyboard_content}\n\n"
f"{technical_implementation_content}\n\n"
f"{animation_narration_content}\n\n"
)
# Ensure scene directory exists (just to be extra safe)
scene_dir = os.path.join(self.output_dir, file_prefix, f"scene{scene_number}")
await self._ensure_directories(scene_dir)
# Save combined implementation plan
combined_plan_path = os.path.join(scene_dir, f"{file_prefix}_scene{scene_number}_implementation_plan.txt")
combined_content = f"# Scene {scene_number} Implementation Plan\n\n{implementation_plan}"
try:
await self._async_file_write(combined_plan_path, combined_content)
print(f"β
Saved implementation plan for scene {scene_number} to: {combined_plan_path}")
except Exception as e:
print(f"β Error saving implementation plan for scene {scene_number}: {e}")
raise
elapsed_time = time.time() - start_time
print(f"Scene {scene_number} implementation completed in {elapsed_time:.2f}s")
return implementation_plan
async def generate_scene_implementation_concurrently_enhanced(self, topic: str, description: str,
plan: str, session_id: str) -> List[str]:
"""Enhanced concurrent scene implementation with better performance."""
start_time = time.time()
# Extract scene information
scene_outline = extract_xml(plan)
scene_number = len(re.findall(r'<SCENE_(\d+)>[^<]', scene_outline))
file_prefix = re.sub(r'[^a-z0-9_]+', '_', topic.lower())
print(f"Starting implementation generation for {scene_number} scenes with max concurrency: {self.max_scene_concurrency}")
async def generate_single_scene_implementation(i):
async with self.scene_semaphore: # Control scene-level concurrency
scene_regex = r'(<SCENE_{0}>.*?</SCENE_{0}>)'.format(i)
scene_match = re.search(
scene_regex,
scene_outline,
re.DOTALL
)
if not scene_match:
print(f"β Error: Could not find scene {i} in scene outline. Regex pattern: {scene_regex}")
raise ValueError(f"Scene {i} not found in scene outline")
scene_outline_i = scene_match.group(1)
scene_trace_id = str(uuid.uuid4())
return await self._generate_scene_implementation_single_enhanced(
topic, description, scene_outline_i, i, file_prefix, session_id, scene_trace_id
)
# Create tasks for all scenes
tasks = [generate_single_scene_implementation(i + 1) for i in range(scene_number)]
# Execute with progress tracking
print(f"Executing {len(tasks)} scene implementation tasks...")
try:
all_scene_implementation_plans = await asyncio.gather(*tasks, return_exceptions=True)
# Handle any exceptions
successful_plans = []
error_count = 0
for i, result in enumerate(all_scene_implementation_plans):
if isinstance(result, Exception):
print(f"β Error in scene {i+1}: {result}")
error_message = f"# Scene {i+1} - Error: {result}"
successful_plans.append(error_message)
# Write error to file to maintain file structure even on failure
scene_dir = os.path.join(self.output_dir, file_prefix, f"scene{i+1}")
os.makedirs(scene_dir, exist_ok=True)
error_file_path = os.path.join(scene_dir, f"{file_prefix}_scene{i+1}_implementation_plan.txt")
try:
with open(error_file_path, 'w') as f:
f.write(error_message)
except Exception as e:
print(f"β Failed to write error file for scene {i+1}: {e}")
error_count += 1
else:
successful_plans.append(result)
print(f"β
Successfully generated implementation plan for scene {i+1}")
total_time = time.time() - start_time
print(f"All scene implementations completed in {total_time:.2f}s")
print(f" Average time per scene: {total_time/len(tasks):.2f}s")
print(f" Success rate: {len(tasks) - error_count}/{len(tasks)} scenes ({(len(tasks) - error_count) / len(tasks) * 100:.1f}%)")
if error_count > 0:
print(f"β οΈ Warning: {error_count} scenes had errors during implementation plan generation")
except Exception as e:
print(f"β Fatal error during scene implementation tasks: {e}")
raise
return successful_plans
async def __aenter__(self):
"""Async context manager entry."""
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit - cleanup resources."""
self.thread_pool.shutdown(wait=True)
# Legacy method compatibility
async def generate_scene_implementation_concurrently(self, topic: str, description: str,
plan: str, session_id: str,
scene_semaphore=None) -> List[str]:
"""Legacy compatibility method - redirects to enhanced version."""
if scene_semaphore:
self.scene_semaphore = scene_semaphore
return await self.generate_scene_implementation_concurrently_enhanced(
topic, description, plan, session_id
)
def _extract_scene_outline_robust(self, response_text: str) -> str:
"""
Robust extraction of scene outline that handles various XML format issues.
This method addresses common problems:
1. XML wrapped in markdown code blocks
2. Missing closing tags
3. Malformed XML structure
4. Extra text before/after XML
"""
import re
# First try: Look for XML wrapped in markdown code blocks
markdown_xml_pattern = r'```xml\s*\n(<SCENE_OUTLINE>.*?</SCENE_OUTLINE>)\s*\n```'
markdown_match = re.search(markdown_xml_pattern, response_text, re.DOTALL)
if markdown_match:
xml_content = markdown_match.group(1)
return self._validate_and_fix_xml(xml_content)
# Second try: Look for direct XML tags
direct_xml_pattern = r'(<SCENE_OUTLINE>.*?</SCENE_OUTLINE>)'
direct_match = re.search(direct_xml_pattern, response_text, re.DOTALL)
if direct_match:
xml_content = direct_match.group(1)
return self._validate_and_fix_xml(xml_content)
# Third try: Look for incomplete XML and attempt to fix
incomplete_pattern = r'<SCENE_OUTLINE>(.*?)(?:</SCENE_OUTLINE>|$)'
incomplete_match = re.search(incomplete_pattern, response_text, re.DOTALL)
if incomplete_match:
xml_content = incomplete_match.group(1)
# Add missing closing tag if needed
full_xml = f"<SCENE_OUTLINE>{xml_content}</SCENE_OUTLINE>"
return self._validate_and_fix_xml(full_xml)
# If no XML structure found, return the entire response but warn
print("β οΈ Warning: No valid XML structure found in LLM response. Using full response.")
print("Response preview:", response_text[:200] + "..." if len(response_text) > 200 else response_text)
return response_text
def _validate_and_fix_xml(self, xml_content: str) -> str:
"""
Validate and fix common XML issues in scene outlines.
"""
import re
# Check for unclosed scene tags
scene_pattern = r'<SCENE_(\d+)>'
scene_matches = re.findall(scene_pattern, xml_content)
fixed_content = xml_content
for scene_num in scene_matches:
# Check if this scene has a proper closing tag
open_tag = f"<SCENE_{scene_num}>"
close_tag = f"</SCENE_{scene_num}>"
# Find the position of this scene's opening tag
open_pos = fixed_content.find(open_tag)
if open_pos == -1:
continue
# Find the next scene's opening tag (if any)
next_scene_pattern = f"<SCENE_{int(scene_num) + 1}>"
next_scene_pos = fixed_content.find(next_scene_pattern, open_pos)
# Check if there's a closing tag before the next scene
close_pos = fixed_content.find(close_tag, open_pos)
if close_pos == -1 or (next_scene_pos != -1 and close_pos > next_scene_pos):
# Missing or misplaced closing tag
if next_scene_pos != -1:
# Insert closing tag before next scene
insert_pos = next_scene_pos
while insert_pos > 0 and fixed_content[insert_pos - 1] in ' \n\t':
insert_pos -= 1
fixed_content = (fixed_content[:insert_pos] +
f"\n {close_tag}\n\n " +
fixed_content[insert_pos:])
else:
# Insert closing tag at the end
end_outline_pos = fixed_content.find("</SCENE_OUTLINE>")
if end_outline_pos != -1:
fixed_content = (fixed_content[:end_outline_pos] +
f"\n {close_tag}\n" +
fixed_content[end_outline_pos:])
else:
fixed_content += f"\n {close_tag}"
print(f"π§ Fixed missing closing tag for SCENE_{scene_num}")
# Ensure proper SCENE_OUTLINE structure
if not fixed_content.strip().startswith("<SCENE_OUTLINE>"):
fixed_content = f"<SCENE_OUTLINE>\n{fixed_content}"
if not fixed_content.strip().endswith("</SCENE_OUTLINE>"):
fixed_content = f"{fixed_content}\n</SCENE_OUTLINE>"
return fixed_content
# Update class alias for backward compatibility
VideoPlanner = EnhancedVideoPlanner |