File size: 21,077 Bytes
9b5ca29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import json
import os
import ast
from typing import List, Dict, Tuple, Optional
import uuid
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import Language
from langchain_core.embeddings import Embeddings
import statistics
import tiktoken
from tqdm import tqdm
from langfuse import Langfuse
from langchain_community.embeddings import HuggingFaceEmbeddings
import re
from mllm_tools.utils import _prepare_text_inputs
from task_generator import get_prompt_detect_plugins
class CodeAwareTextSplitter:
"""Enhanced text splitter that understands code structure."""
def __init__(self, chunk_size: int = 1000, chunk_overlap: int = 200):
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
def split_python_file(self, content: str, metadata: dict) -> List[Document]:
"""Split Python files preserving code structure."""
documents = []
try:
tree = ast.parse(content)
# Extract classes and functions with their docstrings
for node in ast.walk(tree):
if isinstance(node, (ast.ClassDef, ast.FunctionDef, ast.AsyncFunctionDef)):
# Get the source code segment
start_line = node.lineno
end_line = getattr(node, 'end_lineno', start_line + 20)
lines = content.split('\n')
code_segment = '\n'.join(lines[start_line-1:end_line])
# Extract docstring
docstring = ast.get_docstring(node) or ""
# Create enhanced content
enhanced_content = f"""
Type: {"Class" if isinstance(node, ast.ClassDef) else "Function"}
Name: {node.name}
Docstring: {docstring}
Code:
```python
{code_segment}
```
""".strip()
# Enhanced metadata
enhanced_metadata = {
**metadata,
'type': 'class' if isinstance(node, ast.ClassDef) else 'function',
'name': node.name,
'start_line': start_line,
'end_line': end_line,
'has_docstring': bool(docstring),
'docstring': docstring[:200] + "..." if len(docstring) > 200 else docstring
}
documents.append(Document(
page_content=enhanced_content,
metadata=enhanced_metadata
))
# Also create chunks for imports and module-level code
imports_and_constants = self._extract_imports_and_constants(content)
if imports_and_constants:
documents.append(Document(
page_content=f"Module-level imports and constants:\n\n{imports_and_constants}",
metadata={**metadata, 'type': 'module_level', 'name': 'imports_constants'}
))
except SyntaxError:
# Fallback to regular text splitting for invalid Python
splitter = RecursiveCharacterTextSplitter.from_language(
language=Language.PYTHON,
chunk_size=self.chunk_size,
chunk_overlap=self.chunk_overlap
)
documents = splitter.split_documents([Document(page_content=content, metadata=metadata)])
return documents
def split_markdown_file(self, content: str, metadata: dict) -> List[Document]:
"""Split Markdown files preserving structure."""
documents = []
# Split by headers while preserving hierarchy
sections = self._split_by_headers(content)
for section in sections:
# Extract code blocks
code_blocks = self._extract_code_blocks(section['content'])
# Create document for text content
text_content = self._remove_code_blocks(section['content'])
if text_content.strip():
enhanced_metadata = {
**metadata,
'type': 'markdown_section',
'header': section['header'],
'level': section['level'],
'has_code_blocks': len(code_blocks) > 0
}
documents.append(Document(
page_content=f"Header: {section['header']}\n\n{text_content}",
metadata=enhanced_metadata
))
# Create separate documents for code blocks
for i, code_block in enumerate(code_blocks):
enhanced_metadata = {
**metadata,
'type': 'code_block',
'language': code_block['language'],
'in_section': section['header'],
'block_index': i
}
documents.append(Document(
page_content=f"Code example in '{section['header']}':\n\n```{code_block['language']}\n{code_block['code']}\n```",
metadata=enhanced_metadata
))
return documents
def _extract_imports_and_constants(self, content: str) -> str:
"""Extract imports and module-level constants."""
lines = content.split('\n')
relevant_lines = []
for line in lines:
stripped = line.strip()
if (stripped.startswith('import ') or
stripped.startswith('from ') or
(stripped and not stripped.startswith('def ') and
not stripped.startswith('class ') and
not stripped.startswith('#') and
'=' in stripped and stripped.split('=')[0].strip().isupper())):
relevant_lines.append(line)
return '\n'.join(relevant_lines)
def _split_by_headers(self, content: str) -> List[Dict]:
"""Split markdown content by headers."""
sections = []
lines = content.split('\n')
current_section = {'header': 'Introduction', 'level': 0, 'content': ''}
for line in lines:
header_match = re.match(r'^(#{1,6})\s+(.+)$', line)
if header_match:
# Save previous section
if current_section['content'].strip():
sections.append(current_section)
# Start new section
level = len(header_match.group(1))
header = header_match.group(2)
current_section = {'header': header, 'level': level, 'content': ''}
else:
current_section['content'] += line + '\n'
# Add last section
if current_section['content'].strip():
sections.append(current_section)
return sections
def _extract_code_blocks(self, content: str) -> List[Dict]:
"""Extract code blocks from markdown content."""
code_blocks = []
pattern = r'```(\w+)?\n(.*?)\n```'
for match in re.finditer(pattern, content, re.DOTALL):
language = match.group(1) or 'text'
code = match.group(2)
code_blocks.append({'language': language, 'code': code})
return code_blocks
def _remove_code_blocks(self, content: str) -> str:
"""Remove code blocks from content."""
pattern = r'```\w*\n.*?\n```'
return re.sub(pattern, '', content, flags=re.DOTALL)
class EnhancedRAGVectorStore:
"""Enhanced RAG vector store with improved code understanding."""
def __init__(self,
chroma_db_path: str = "chroma_db",
manim_docs_path: str = "rag/manim_docs",
embedding_model: str = "hf:ibm-granite/granite-embedding-30m-english",
trace_id: str = None,
session_id: str = None,
use_langfuse: bool = True,
helper_model = None):
self.chroma_db_path = chroma_db_path
self.manim_docs_path = manim_docs_path
self.embedding_model = embedding_model
self.trace_id = trace_id
self.session_id = session_id
self.use_langfuse = use_langfuse
self.helper_model = helper_model
self.enc = tiktoken.encoding_for_model("gpt-4")
self.plugin_stores = {}
self.code_splitter = CodeAwareTextSplitter()
self.vector_store = self._load_or_create_vector_store()
def _load_or_create_vector_store(self):
"""Enhanced vector store creation with better document processing."""
print("Creating enhanced vector store with code-aware processing...")
core_path = os.path.join(self.chroma_db_path, "manim_core_enhanced")
if os.path.exists(core_path):
print("Loading existing enhanced ChromaDB...")
self.core_vector_store = Chroma(
collection_name="manim_core_enhanced",
persist_directory=core_path,
embedding_function=self._get_embedding_function()
)
else:
print("Creating new enhanced ChromaDB...")
self.core_vector_store = self._create_enhanced_core_store()
# Process plugins with enhanced splitting
plugin_docs_path = os.path.join(self.manim_docs_path, "plugin_docs")
if os.path.exists(plugin_docs_path):
for plugin_name in os.listdir(plugin_docs_path):
plugin_store_path = os.path.join(self.chroma_db_path, f"manim_plugin_{plugin_name}_enhanced")
if os.path.exists(plugin_store_path):
print(f"Loading existing enhanced plugin store: {plugin_name}")
self.plugin_stores[plugin_name] = Chroma(
collection_name=f"manim_plugin_{plugin_name}_enhanced",
persist_directory=plugin_store_path,
embedding_function=self._get_embedding_function()
)
else:
print(f"Creating new enhanced plugin store: {plugin_name}")
plugin_path = os.path.join(plugin_docs_path, plugin_name)
if os.path.isdir(plugin_path):
plugin_store = Chroma(
collection_name=f"manim_plugin_{plugin_name}_enhanced",
embedding_function=self._get_embedding_function(),
persist_directory=plugin_store_path
)
plugin_docs = self._process_documentation_folder_enhanced(plugin_path)
if plugin_docs:
self._add_documents_to_store(plugin_store, plugin_docs, plugin_name)
self.plugin_stores[plugin_name] = plugin_store
return self.core_vector_store
def _get_embedding_function(self) -> Embeddings:
"""Enhanced embedding function with better model selection."""
if self.embedding_model.startswith('hf:'):
model_name = self.embedding_model[3:]
print(f"Using HuggingFaceEmbeddings with model: {model_name}")
# Use better models for code understanding
if 'code' not in model_name.lower():
print("Consider using a code-specific embedding model like 'microsoft/codebert-base'")
return HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
else:
raise ValueError("Only HuggingFace embeddings are supported in this configuration.")
def _create_enhanced_core_store(self):
"""Create enhanced core store with better document processing."""
core_vector_store = Chroma(
collection_name="manim_core_enhanced",
embedding_function=self._get_embedding_function(),
persist_directory=os.path.join(self.chroma_db_path, "manim_core_enhanced")
)
core_docs = self._process_documentation_folder_enhanced(
os.path.join(self.manim_docs_path, "manim_core")
)
if core_docs:
self._add_documents_to_store(core_vector_store, core_docs, "manim_core_enhanced")
return core_vector_store
def _process_documentation_folder_enhanced(self, folder_path: str) -> List[Document]:
"""Enhanced document processing with code-aware splitting."""
all_docs = []
for root, _, files in os.walk(folder_path):
for file in files:
if file.endswith(('.md', '.py')):
file_path = os.path.join(root, file)
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
base_metadata = {
'source': file_path,
'filename': file,
'file_type': 'python' if file.endswith('.py') else 'markdown',
'relative_path': os.path.relpath(file_path, folder_path)
}
if file.endswith('.py'):
docs = self.code_splitter.split_python_file(content, base_metadata)
else: # .md files
docs = self.code_splitter.split_markdown_file(content, base_metadata)
# Add source prefix to content
for doc in docs:
doc.page_content = f"Source: {file_path}\nType: {doc.metadata.get('type', 'unknown')}\n\n{doc.page_content}"
all_docs.extend(docs)
except Exception as e:
print(f"Error loading file {file_path}: {e}")
print(f"Processed {len(all_docs)} enhanced document chunks from {folder_path}")
return all_docs
def _add_documents_to_store(self, vector_store: Chroma, documents: List[Document], store_name: str):
"""Enhanced document addition with better batching."""
print(f"Adding {len(documents)} enhanced documents to {store_name} store")
# Group documents by type for better organization
doc_types = {}
for doc in documents:
doc_type = doc.metadata.get('type', 'unknown')
if doc_type not in doc_types:
doc_types[doc_type] = []
doc_types[doc_type].append(doc)
print(f"Document types distribution: {dict((k, len(v)) for k, v in doc_types.items())}")
# Calculate token statistics
token_lengths = [len(self.enc.encode(doc.page_content)) for doc in documents]
print(f"Token length statistics for {store_name}: "
f"Min: {min(token_lengths)}, Max: {max(token_lengths)}, "
f"Mean: {sum(token_lengths) / len(token_lengths):.1f}, "
f"Median: {statistics.median(token_lengths):.1f}")
batch_size = 10
for i in tqdm(range(0, len(documents), batch_size), desc=f"Processing {store_name} enhanced batches"):
batch_docs = documents[i:i + batch_size]
batch_ids = [str(uuid.uuid4()) for _ in batch_docs]
vector_store.add_documents(documents=batch_docs, ids=batch_ids)
vector_store.persist()
def find_relevant_docs(self, queries: List[Dict], k: int = 5, trace_id: str = None, topic: str = None, scene_number: int = None) -> str:
"""Find relevant documents - compatibility method that calls the enhanced version."""
return self.find_relevant_docs_enhanced(queries, k, trace_id, topic, scene_number)
def find_relevant_docs_enhanced(self, queries: List[Dict], k: int = 5, trace_id: str = None, topic: str = None, scene_number: int = None) -> str:
"""Enhanced document retrieval with type-aware search."""
# Separate queries by intent
code_queries = [q for q in queries if any(keyword in q["query"].lower()
for keyword in ["function", "class", "method", "import", "code", "implementation"])]
concept_queries = [q for q in queries if q not in code_queries]
all_results = []
# Search with different strategies for different query types
for query in code_queries:
results = self._search_with_filters(
query["query"],
k=k,
filter_metadata={'type': ['function', 'class', 'code_block']},
boost_code=True
)
all_results.extend(results)
for query in concept_queries:
results = self._search_with_filters(
query["query"],
k=k,
filter_metadata={'type': ['markdown_section', 'module_level']},
boost_code=False
)
all_results.extend(results)
# Remove duplicates and format results
unique_results = self._remove_duplicates(all_results)
return self._format_results(unique_results)
def _search_with_filters(self, query: str, k: int, filter_metadata: Dict = None, boost_code: bool = False) -> List[Dict]:
"""Search with metadata filters and result boosting."""
# This is a simplified version - in practice, you'd implement proper filtering
core_results = self.core_vector_store.similarity_search_with_relevance_scores(
query=query, k=k, score_threshold=0.3
)
formatted_results = []
for result in core_results:
doc, score = result
# Boost scores for code-related results if needed
if boost_code and doc.metadata.get('type') in ['function', 'class', 'code_block']:
score *= 1.2
formatted_results.append({
"query": query,
"source": doc.metadata['source'],
"content": doc.page_content,
"score": score,
"type": doc.metadata.get('type', 'unknown'),
"metadata": doc.metadata
})
return formatted_results
def _remove_duplicates(self, results: List[Dict]) -> List[Dict]:
"""Remove duplicate results based on content similarity."""
unique_results = []
seen_content = set()
for result in sorted(results, key=lambda x: x['score'], reverse=True):
content_hash = hash(result['content'][:200]) # Hash first 200 chars
if content_hash not in seen_content:
unique_results.append(result)
seen_content.add(content_hash)
return unique_results[:10] # Return top 10 unique results
def _format_results(self, results: List[Dict]) -> str:
"""Format results with enhanced presentation."""
if not results:
return "No relevant documentation found."
formatted = "## Relevant Documentation\n\n"
# Group by type
by_type = {}
for result in results:
result_type = result['type']
if result_type not in by_type:
by_type[result_type] = []
by_type[result_type].append(result)
for result_type, type_results in by_type.items():
formatted += f"### {result_type.replace('_', ' ').title()} Documentation\n\n"
for result in type_results:
formatted += f"**Source:** {result['source']}\n"
formatted += f"**Relevance Score:** {result['score']:.3f}\n"
formatted += f"**Content:**\n```\n{result['content'][:500]}...\n```\n\n"
return formatted
# Update the existing RAGVectorStore class alias for backward compatibility
RAGVectorStore = EnhancedRAGVectorStore |