File size: 13,441 Bytes
9b5ca29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
"""
Visual Error Detection Utilities for Manim Code Analysis
This module provides utilities for detecting and analyzing visual errors in Manim animations,
specifically focusing on element overlap, positioning issues, and spatial constraint violations.
"""
import re
import logging
from typing import Dict, List, Tuple, Any, Optional
from pathlib import Path
logger = logging.getLogger(__name__)
# Visual error detection patterns
VISUAL_ERROR_PATTERNS = {
'overlap_keywords': [
'overlap', 'overlapping', 'collision', 'colliding', 'obscured', 'hidden',
'blocked', 'covering', 'covered', 'behind', 'on top of'
],
'boundary_keywords': [
'out of bounds', 'outside frame', 'clipped', 'cut off', 'beyond edge',
'outside safe area', 'margin violation', 'boundary violation'
],
'spacing_keywords': [
'too close', 'insufficient spacing', 'cramped', 'crowded', 'bunched up',
'spacing violation', 'minimum distance', 'tight spacing'
],
'positioning_keywords': [
'misaligned', 'mispositioned', 'wrong position', 'incorrect placement',
'poor arrangement', 'bad layout', 'disorganized'
]
}
# Critical visual issues that require immediate fixing
CRITICAL_VISUAL_ISSUES = [
'text completely obscured',
'formula unreadable',
'important element hidden',
'content outside frame',
'major overlap',
'critical positioning error'
]
# Safe area and spacing constraints (Manim units)
VISUAL_CONSTRAINTS = {
'safe_area_margin': 0.5, # Units from frame edge
'minimum_spacing': 0.3, # Units between elements
'frame_width': 14.22, # Manim frame width
'frame_height': 8.0, # Manim frame height
'center_x': 0.0, # Frame center X
'center_y': 0.0, # Frame center Y
'x_bounds': (-7.0, 7.0), # Safe X coordinate range
'y_bounds': (-4.0, 4.0) # Safe Y coordinate range
}
class VisualErrorDetector:
"""Utility class for detecting and categorizing visual errors in VLM responses."""
def __init__(self):
self.error_patterns = VISUAL_ERROR_PATTERNS
self.critical_issues = CRITICAL_VISUAL_ISSUES
self.constraints = VISUAL_CONSTRAINTS
def detect_error_types(self, analysis_text: str) -> Dict[str, List[str]]:
"""
Detect different types of visual errors from VLM analysis text.
Args:
analysis_text: Raw text from VLM visual analysis
Returns:
Dictionary categorizing detected errors by type
"""
errors = {
'overlap_errors': [],
'boundary_errors': [],
'spacing_errors': [],
'positioning_errors': [],
'critical_errors': []
}
analysis_lower = analysis_text.lower()
# Check for overlap errors
for keyword in self.error_patterns['overlap_keywords']:
if keyword in analysis_lower:
errors['overlap_errors'].append(self._extract_error_context(analysis_text, keyword))
# Check for boundary errors
for keyword in self.error_patterns['boundary_keywords']:
if keyword in analysis_lower:
errors['boundary_errors'].append(self._extract_error_context(analysis_text, keyword))
# Check for spacing errors
for keyword in self.error_patterns['spacing_keywords']:
if keyword in analysis_lower:
errors['spacing_errors'].append(self._extract_error_context(analysis_text, keyword))
# Check for positioning errors
for keyword in self.error_patterns['positioning_keywords']:
if keyword in analysis_lower:
errors['positioning_errors'].append(self._extract_error_context(analysis_text, keyword))
# Check for critical issues
for issue in self.critical_issues:
if issue in analysis_lower:
errors['critical_errors'].append(self._extract_error_context(analysis_text, issue))
# Remove empty entries and duplicates
for error_type in errors:
errors[error_type] = list(set([e for e in errors[error_type] if e]))
return errors
def _extract_error_context(self, text: str, keyword: str, context_length: int = 100) -> str:
"""
Extract context around a detected error keyword.
Args:
text: Full analysis text
keyword: Error keyword found
context_length: Characters to include around keyword
Returns:
Context string around the error keyword
"""
try:
# Find keyword position (case insensitive)
lower_text = text.lower()
keyword_pos = lower_text.find(keyword.lower())
if keyword_pos == -1:
return keyword
# Extract context around keyword
start = max(0, keyword_pos - context_length // 2)
end = min(len(text), keyword_pos + len(keyword) + context_length // 2)
context = text[start:end].strip()
# Clean up context
context = re.sub(r'\s+', ' ', context)
return context
except Exception as e:
logger.warning(f"Error extracting context for keyword '{keyword}': {e}")
return keyword
def categorize_severity(self, errors: Dict[str, List[str]]) -> Dict[str, str]:
"""
Categorize the severity of detected visual errors.
Args:
errors: Dictionary of detected errors by type
Returns:
Dictionary mapping error types to severity levels
"""
severity_map = {}
# Critical errors are always high severity
if errors['critical_errors']:
severity_map['critical'] = 'HIGH'
# Overlap errors can vary in severity
if errors['overlap_errors']:
# Check if any overlap errors mention important elements
important_keywords = ['text', 'formula', 'equation', 'title', 'label']
has_important_overlap = any(
any(keyword in error.lower() for keyword in important_keywords)
for error in errors['overlap_errors']
)
severity_map['overlap'] = 'HIGH' if has_important_overlap else 'MEDIUM'
# Boundary errors are typically medium to high severity
if errors['boundary_errors']:
severity_map['boundary'] = 'MEDIUM'
# Spacing errors are usually low to medium severity
if errors['spacing_errors']:
severity_map['spacing'] = 'LOW'
# Positioning errors vary based on context
if errors['positioning_errors']:
severity_map['positioning'] = 'MEDIUM'
return severity_map
def generate_fix_suggestions(self, errors: Dict[str, List[str]]) -> List[str]:
"""
Generate specific code fix suggestions based on detected errors.
Args:
errors: Dictionary of detected errors by type
Returns:
List of specific fix suggestions
"""
suggestions = []
if errors['overlap_errors']:
suggestions.extend([
"Use `.next_to()` method to position elements relative to each other with proper spacing",
"Apply `buff` parameter in positioning methods to ensure minimum 0.3 unit spacing",
"Reorganize elements into VGroups for better spatial management",
"Use `bring_to_front()` or `bring_to_back()` to manage z-order layering"
])
if errors['boundary_errors']:
suggestions.extend([
"Ensure all elements are positioned within safe area bounds (-7 to 7 for X, -4 to 4 for Y)",
"Use `move_to(ORIGIN)` and then apply relative positioning to keep elements centered",
"Check element sizes and scale them down if they extend beyond frame boundaries",
"Apply safe area margins of 0.5 units from frame edges"
])
if errors['spacing_errors']:
suggestions.extend([
"Use `buff=0.3` or higher in `.next_to()` methods for proper spacing",
"Apply `.shift()` method to adjust element positions for better spacing",
"Consider using `.arrange()` method for VGroups to maintain consistent spacing",
"Verify minimum 0.3 unit spacing between all visual elements"
])
if errors['positioning_errors']:
suggestions.extend([
"Use relative positioning methods exclusively: `.next_to()`, `.align_to()`, `.shift()`",
"Position elements relative to ORIGIN, other objects, or scene margins",
"Ensure logical flow and visual hierarchy in element arrangement",
"Group related elements using VGroup for coordinated positioning"
])
# Remove duplicates while preserving order
unique_suggestions = []
for suggestion in suggestions:
if suggestion not in unique_suggestions:
unique_suggestions.append(suggestion)
return unique_suggestions
def validate_manim_constraints(self, code: str) -> Dict[str, List[str]]:
"""
Validate Manim code against spatial constraints.
Args:
code: Manim code to validate
Returns:
Dictionary of constraint violations found in code
"""
violations = {
'absolute_coordinates': [],
'unsafe_positioning': [],
'missing_spacing': [],
'out_of_bounds': []
}
lines = code.split('\n')
for i, line in enumerate(lines, 1):
# Check for absolute coordinates (potential issues)
if re.search(r'move_to\s*\(\s*[-+]?\d+\.?\d*\s*,\s*[-+]?\d+\.?\d*', line):
violations['absolute_coordinates'].append(f"Line {i}: {line.strip()}")
# Check for potentially unsafe positioning
if re.search(r'shift\s*\(\s*[^)]*[5-9]\d*', line):
violations['unsafe_positioning'].append(f"Line {i}: Large shift detected - {line.strip()}")
# Check for missing buff parameters in next_to calls
if 'next_to' in line and 'buff' not in line:
violations['missing_spacing'].append(f"Line {i}: Missing buff parameter - {line.strip()}")
# Check for coordinates that might be out of bounds
coord_matches = re.findall(r'[-+]?\d+\.?\d*', line)
for coord in coord_matches:
try:
val = float(coord)
if abs(val) > 10: # Potentially problematic large coordinates
violations['out_of_bounds'].append(f"Line {i}: Large coordinate {val} - {line.strip()}")
except ValueError:
continue
return violations
def create_visual_fix_context(
errors: Dict[str, List[str]],
suggestions: List[str],
constraints: Dict[str, Any]
) -> str:
"""
Create a formatted context string for visual fix operations.
Args:
errors: Detected visual errors
suggestions: Fix suggestions
constraints: Visual constraints to enforce
Returns:
Formatted context string for LLM prompt
"""
context_parts = []
if any(errors.values()):
context_parts.append("**DETECTED VISUAL ERRORS:**")
for error_type, error_list in errors.items():
if error_list:
error_type_formatted = error_type.replace('_', ' ').title()
context_parts.append(f"\n{error_type_formatted}:")
for error in error_list:
context_parts.append(f" - {error}")
if suggestions:
context_parts.append("\n\n**RECOMMENDED FIXES:**")
for i, suggestion in enumerate(suggestions, 1):
context_parts.append(f"{i}. {suggestion}")
context_parts.append("\n\n**SPATIAL CONSTRAINTS TO ENFORCE:**")
context_parts.append(f"- Safe area margin: {constraints['safe_area_margin']} units from edges")
context_parts.append(f"- Minimum spacing: {constraints['minimum_spacing']} units between elements")
context_parts.append(f"- X coordinate bounds: {constraints['x_bounds']}")
context_parts.append(f"- Y coordinate bounds: {constraints['y_bounds']}")
return '\n'.join(context_parts)
# Export main utilities
__all__ = [
'VisualErrorDetector',
'VISUAL_ERROR_PATTERNS',
'CRITICAL_VISUAL_ISSUES',
'VISUAL_CONSTRAINTS',
'create_visual_fix_context'
]
|