t2m / evaluate.py
thanhkt's picture
Upload 11 files
6ec19f4 verified
raw
history blame
18.8 kB
import os
import json
import argparse
import tempfile
from typing import Dict, List, Union
from datetime import datetime
from dotenv import load_dotenv
from moviepy import VideoFileClip
from mllm_tools.litellm import LiteLLMWrapper
from mllm_tools.gemini import GeminiWrapper
from eval_suite.utils import calculate_geometric_mean
from eval_suite.text_utils import parse_srt_to_text, fix_transcript, evaluate_text
from eval_suite.video_utils import evaluate_video_chunk_new
from eval_suite.image_utils import evaluate_sampled_images
load_dotenv()
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), "src", "utils", "allowed_models.json")) as f:
ALLOWED_MODELS = json.load(f)["allowed_models"]
def combine_results(output_folder: str, combined_file: str, results: Dict[str, Dict]) -> None:
"""
Combine all evaluation results into a single file.
Args:
output_folder (str): Directory to store the combined file.
combined_file (str): Name of the combined file.
results (Dict[str, Dict]): Dictionary of evaluation results with file names as keys.
Returns:
None
"""
combined_path = os.path.join(output_folder, combined_file)
with open(combined_path, 'w') as output_file:
json.dump(results, output_file, indent=4)
def save_individual_result(output_folder: str, file_name: str, result: Dict) -> None:
"""
Save individual evaluation result to a file.
Args:
output_folder (str): Directory to store the evaluation file.
file_name (str): Name of the file.
result (Dict): Evaluation result.
Returns:
None
"""
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
result_file = f"evaluation_{file_name}_{current_time}.json"
os.makedirs(output_folder, exist_ok=True)
result_path = os.path.join(output_folder, result_file)
with open(result_path, 'w') as output_file:
json.dump(result, output_file, indent=4)
def evaluate_text_file(model, transcript_path, retry_limit):
"""
Evaluate a text file using the provided model.
Args:
model: The model to use for evaluation.
transcript_path (str): Path to the transcript file (.srt or .txt).
retry_limit (int): Number of retry attempts for evaluation.
Returns:
Dict or None: Evaluation results if successful, None if file format unsupported.
"""
if not transcript_path.endswith(('.srt', '.txt')):
print(f"Skipping {transcript_path}: Unsupported file format for text evaluation.")
return None
if transcript_path.endswith(".srt"):
transcript = parse_srt_to_text(transcript_path)
elif transcript_path.endswith(".txt"):
with open(transcript_path) as f:
transcript = f.read().strip()
else:
raise ValueError("Unrecognized transcript file format.")
capital_letter_proportion = sum(1 for c in transcript if c.isupper()) / sum(1 for c in transcript if c.isalpha())
if capital_letter_proportion < 0.01:
transcript = fix_transcript(model, transcript)
print(f"Performing text evaluation: {os.path.basename(transcript_path)}")
result = evaluate_text(model, transcript, retry_limit)
return result
def evaluate_video_file(model, video_path, transcript_path, description_path, target_fps=None, output_folder=None):
"""
Evaluate a video file using the provided model.
Args:
model: The model to use for evaluation.
video_path (str): Path to the video file.
transcript_path (str): Path to the transcript file.
description_path (str): Path to the description file.
target_fps (int, optional): Target frames per second for video processing.
output_folder (str, optional): Directory to store output files.
Returns:
Dict or None: Evaluation results if successful, None if file format unsupported.
"""
if not video_path.endswith(('.mp4', '.mkv')):
print(f"Skipping {video_path}: Unsupported file format for video evaluation.")
return None
moviepy_temp_dir = os.path.join(output_folder, "moviepy_temp")
# Chunking
num_chunks = 10
with VideoFileClip(video_path) as clip:
duration = clip.duration
chunk_duration = duration / num_chunks
results = []
# Create a temporary directory in the output_folder
temp_dir_parent = output_folder or os.getcwd()
with tempfile.TemporaryDirectory(dir=temp_dir_parent) as temp_dir:
for i in range(10):
start = i * chunk_duration
end = min(start + chunk_duration, duration)
chunk = clip.subclipped(start, end)
chunk_path = os.path.join(temp_dir, f"chunk_{i+1}.mp4")
# Explicitly set the temp_audiofile path with matching codec
temp_audiofile = os.path.join(moviepy_temp_dir, f"temp_audio_chunk_{i+1}.m4a")
chunk.write_videofile(
chunk_path,
codec="libx264",
audio_codec="aac",
temp_audiofile=temp_audiofile,
audio_bitrate="192k",
preset="ultrafast", # Speed up encoding
logger=None
)
# Create processed videos folder inside output_folder
processed_videos_dir = os.path.join(output_folder, "processed_videos")
save_path = os.path.join(processed_videos_dir, f"processed_chunk_{i+1}.mp4")
result = evaluate_video_chunk_new(
model,
chunk_path,
transcript_path,
description_path,
target_fps=target_fps,
save_processed_video=save_path
)
results.append(result)
score_dict = {}
for key in results[0]["evaluation"].keys():
score_dict[key] = []
for result in results:
score_dict[key].append(result["evaluation"][key]["score"])
evaluation = {}
for key, scores in score_dict.items():
evaluation[key] = {"score": calculate_geometric_mean(scores)}
result_json = {
"evaluation": evaluation,
"video_chunks": results
}
return result_json
def extract_scores(data: Union[Dict, List]) -> List[int]:
"""
Extract all score values from a nested dictionary or list structure.
Args:
data (Union[Dict, List]): The data structure to extract scores from.
Returns:
List[int]: List of extracted score values.
"""
scores = []
if isinstance(data, dict):
for key, value in data.items():
if "chunks" in key:
continue
elif isinstance(value, dict) or isinstance(value, list):
scores.extend(extract_scores(value))
elif key == 'score':
scores.append(value)
elif isinstance(data, list):
for item in data:
scores.extend(extract_scores(item))
return scores
def calculate_overall_score(result: Dict) -> float:
"""
Calculate the overall score from evaluation results.
Args:
result (Dict): Dictionary containing evaluation results.
Returns:
float: The calculated overall score.
"""
scores = extract_scores(result)
overall_score = calculate_geometric_mean(scores)
return overall_score
def process_topic_name(topic_name: str) -> str:
"""
Process a topic name by capitalizing words and handling special characters.
Args:
topic_name (str): The topic name to process.
Returns:
str: The processed topic name.
"""
words = topic_name.replace("_s_", "'s_").split("_")
return " ".join([word.capitalize() for word in words])
def merge_dicts(dict1: dict, dict2: dict) -> dict:
"""
Recursively merge two dictionaries.
Args:
dict1 (dict): First dictionary.
dict2 (dict): Second dictionary.
Returns:
dict: Merged dictionary.
"""
merged = dict1.copy()
for key, value in dict2.items():
if key in merged and isinstance(merged[key], dict) and isinstance(value, dict):
merged[key] = merge_dicts(merged[key], value)
else:
merged[key] = value
return merged
def process_theorem(models, file_path: str, eval_type: str, retry_limit: int,
target_fps: int = None, use_parent_folder_as_topic: bool = False,
output_folder: str = None) -> tuple[str, dict]:
"""
Process a theorem file or directory for evaluation.
Args:
models: Dictionary of models for different evaluation types.
file_path (str): Path to the file or directory to evaluate.
eval_type (str): Type of evaluation to perform.
retry_limit (int): Number of retry attempts.
target_fps (int, optional): Target frames per second for video processing.
use_parent_folder_as_topic (bool, optional): Use parent folder name as topic.
output_folder (str, optional): Directory to store output files.
Returns:
tuple[str, dict]: Tuple of file name and evaluation results.
"""
ext_map = {
'text': ('.txt', '.srt'),
'video': ('.mp4', '.mkv')
}
# Handle single file evaluation
if os.path.isfile(file_path):
file_ext = os.path.splitext(file_path)[1].lower()
file_name = os.path.basename(file_path)
if eval_type == "text" and file_ext in ext_map['text']:
return file_name, evaluate_text_file(models['text'], file_path, retry_limit)
elif eval_type == "video" and file_ext in ext_map['video']:
if use_parent_folder_as_topic:
topic_name = os.path.basename(os.path.dirname(file_path))
else:
topic_name = None
topic_name = process_topic_name(topic_name)
return file_name, evaluate_video_file(models['video'], file_path, None, topic_name, target_fps, output_folder)
elif eval_type == "image" and file_ext in ext_map['video']:
if use_parent_folder_as_topic:
topic_name = os.path.basename(os.path.dirname(file_path))
else:
topic_name = None
topic_name = process_topic_name(topic_name)
return file_name, evaluate_sampled_images(models['image'], file_path, topic_name, num_chunks=10, output_folder=output_folder)
elif eval_type == "all":
raise ValueError("Evaluation type 'all' is not supported for a single file. Try passing a folder with both a video and a subtitle file.")
else:
raise ValueError(f"File type of {file_path} does not match evaluation type {eval_type!r}")
# Handle directory evaluation
theorem_dir = file_path
all_files = os.listdir(theorem_dir)
# Look for transcript files, prioritizing .srt over .txt if both exist
transcript_file_candidates = [f for f in all_files if f.endswith(ext_map['text']) and not f.endswith('_scene_outline.txt')]
srt_files = [f for f in transcript_file_candidates if f.endswith('.srt')]
txt_files = [f for f in transcript_file_candidates if f.endswith('.txt')]
transcript_path = None
if srt_files:
transcript_path = os.path.join(theorem_dir, srt_files[0])
elif txt_files:
transcript_path = os.path.join(theorem_dir, txt_files[0])
video_file_candidates = [f for f in all_files if f.endswith(ext_map['video'])]
video_path = os.path.join(theorem_dir, video_file_candidates[0]) if len(video_file_candidates) == 1 else None
topic_name = os.path.basename(theorem_dir)
topic_name = process_topic_name(topic_name)
if not video_path:
print(f"Skipping {theorem_dir}: No video file found")
return None, None
text_result = video_result = image_result = None
if eval_type == "text" or eval_type == "all":
if transcript_path is None:
print(f"Warning: No suitable transcript file found in {theorem_dir}")
else:
text_result = evaluate_text_file(models['text'], transcript_path, retry_limit)
if eval_type == "video" or eval_type == "all":
assert video_path is not None, f"Expected 1 video file, got {len(video_file_candidates)} for {theorem_dir}"
video_result = evaluate_video_file(models['video'], video_path, transcript_path, topic_name, target_fps, output_folder)
if eval_type == "image" or eval_type == "all":
assert video_path is not None, f"Expected 1 video file, got {len(video_file_candidates)} for {theorem_dir}"
image_result = evaluate_sampled_images(models['image'], video_path, topic_name, num_chunks=10, output_folder=output_folder)
if eval_type == "all":
result = {}
if text_result:
result = merge_dicts(result, text_result)
if video_result:
result = merge_dicts(result, video_result)
if image_result:
result = merge_dicts(result, image_result)
if result:
result["evaluation"]["overall_score"] = calculate_overall_score(result)
else:
result = text_result if eval_type == "text" else video_result if eval_type == "video" else image_result if eval_type == "image" else None
file_name = os.path.basename(theorem_dir)
return file_name, result
def main():
"""
Main function to run the evaluation script.
Parses command line arguments and orchestrates the evaluation process
for text, video, and image content using specified AI models.
"""
parser = argparse.ArgumentParser(description='Automatic evaluation of theorem explanation videos with LLMs')
parser.add_argument('--model_text', type=str,
choices=ALLOWED_MODELS,
default='azure/gpt-4o',
help='Select the AI model to use for text evaluation')
parser.add_argument('--model_video', type=str,
choices=['gemini/gemini-1.5-pro-002',
'gemini/gemini-2.0-flash-exp',
'gemini/gemini-2.0-pro-exp-02-05'],
default='gemini/gemini-1.5-pro-002',
help='Select the AI model to use for video evaluation')
parser.add_argument('--model_image', type=str,
choices=ALLOWED_MODELS,
default='azure/gpt-4o',
help='Select the AI model to use for image evaluation')
parser.add_argument('--eval_type', type=str, choices=['text', 'video', 'image', 'all'], default='all', help='Type of evaluation to perform')
parser.add_argument('--file_path', type=str, help='Path to a file or a theorem folder', required=True)
parser.add_argument('--output_folder', type=str, help='Directory to store the evaluation files', required=True)
parser.add_argument('--retry_limit', type=int, default=3, help='Number of retry attempts for each inference')
parser.add_argument('--combine', action='store_true', help='Combine all results into a single JSON file')
parser.add_argument('--bulk_evaluate', action='store_true', help='Evaluate a folder of theorems together', default=False)
parser.add_argument('--target_fps', type=int, help='Target FPS for video processing. If not set, original video FPS will be used', required=False)
parser.add_argument('--use_parent_folder_as_topic', action='store_true', help='Use parent folder name as topic name for single file evaluation', default=True)
parser.add_argument('--max_workers', type=int, default=4, help='Maximum number of concurrent workers for parallel processing')
args = parser.parse_args()
# Initialize separate models
text_model = LiteLLMWrapper(
model_name=args.model_text,
temperature=0.0,
)
video_model = GeminiWrapper(
model_name=args.model_video,
temperature=0.0,
)
image_model = LiteLLMWrapper(
model_name=args.model_image,
temperature=0.0,
)
models = {
'text': text_model,
'video': video_model,
'image': image_model
}
theorem_dirs = []
if args.bulk_evaluate:
assert os.path.isdir(args.file_path), "File path must be a folder for --bulk_evaluate"
for root, dirnames, _ in os.walk(args.file_path):
if not any(f.endswith(".mp4") for f in os.listdir(root)):
continue
theorem_dirs.append(root)
elif os.path.isdir(args.file_path):
assert any(f.endswith(".mp4") for f in os.listdir(args.file_path)), "The provided folder must contain a video file"
theorem_dirs.append(args.file_path)
# Create output directory and its temp subdirectories if it doesn't exist
os.makedirs(args.output_folder, exist_ok=True)
moviepy_temp_dir = os.path.join(args.output_folder, "moviepy_temp")
os.makedirs(moviepy_temp_dir, exist_ok=True)
VideoFileClip.DEFAULT_TEMP_DIR = moviepy_temp_dir
processed_videos_dir = os.path.join(args.output_folder, "processed_videos")
os.makedirs(processed_videos_dir, exist_ok=True)
results = {}
if theorem_dirs:
for theorem_dir in theorem_dirs:
file_name, result = process_theorem(
models,
theorem_dir,
args.eval_type,
args.retry_limit,
args.target_fps,
args.use_parent_folder_as_topic,
args.output_folder
)
if result is not None:
results[file_name] = result
if not args.combine:
save_individual_result(args.output_folder, file_name, result)
else:
file_name, result = process_theorem(
models,
args.file_path,
args.eval_type,
args.retry_limit,
args.target_fps,
args.use_parent_folder_as_topic,
args.output_folder
)
if result is not None:
results[file_name] = result
if not args.combine:
save_individual_result(args.output_folder, file_name, result)
if args.combine:
if len(results) > 1:
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
combined_file = f"evaluation_{current_time}.json"
combine_results(args.output_folder, combined_file, results)
print("Combining results completed.")
else:
for file_name, result in results.items():
save_individual_result(args.output_folder, file_name, result)
os.rmdir(moviepy_temp_dir)
if __name__ == "__main__":
main()