t2m / src /core /video_renderer.py
thanhkt's picture
Upload 75 files
9b5ca29 verified
raw
history blame
46.8 kB
import os
import re
import subprocess
import asyncio
import concurrent.futures
from PIL import Image
from typing import Optional, List, Union, Dict
import traceback
import sys
import time
import json
import hashlib
from pathlib import Path
import shutil
import tempfile
try:
import ffmpeg
except ImportError:
print("Warning: ffmpeg-python not installed. Video combination features will be limited.")
ffmpeg = None
from src.core.parse_video import (
get_images_from_video,
image_with_most_non_black_space
)
class OptimizedVideoRenderer:
"""Enhanced video renderer with significant performance optimizations."""
def __init__(self, output_dir="output", print_response=False, use_visual_fix_code=False,
max_concurrent_renders=4, enable_caching=True, default_quality="medium",
use_gpu_acceleration=False, preview_mode=False):
"""Initialize the enhanced VideoRenderer.
Args:
output_dir (str): Directory for output files
print_response (bool): Whether to print responses
use_visual_fix_code (bool): Whether to use visual fix code
max_concurrent_renders (int): Maximum concurrent render processes
enable_caching (bool): Enable intelligent caching system
default_quality (str): Default render quality (low/medium/high/preview)
use_gpu_acceleration (bool): Use GPU acceleration if available
preview_mode (bool): Enable preview mode for faster development
"""
self.output_dir = output_dir
self.print_response = print_response
self.use_visual_fix_code = use_visual_fix_code
self.max_concurrent_renders = max_concurrent_renders
self.enable_caching = enable_caching
self.default_quality = default_quality
self.use_gpu_acceleration = use_gpu_acceleration
self.preview_mode = preview_mode
# Performance monitoring
self.render_stats = {
'total_renders': 0,
'cache_hits': 0,
'total_time': 0,
'average_time': 0
}
# Quality presets for faster rendering
self.quality_presets = {
'preview': {'flag': '-ql', 'fps': 15, 'resolution': '480p'},
'low': {'flag': '-ql', 'fps': 15, 'resolution': '480p'},
'medium': {'flag': '-qm', 'fps': 30, 'resolution': '720p'},
'high': {'flag': '-qh', 'fps': 60, 'resolution': '1080p'},
'production': {'flag': '-qp', 'fps': 60, 'resolution': '1440p'}
}
# Cache directory for rendered scenes
self.cache_dir = os.path.join(output_dir, '.render_cache')
if enable_caching:
os.makedirs(self.cache_dir, exist_ok=True)
# Thread pool for concurrent operations
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=max_concurrent_renders)
def _get_code_hash(self, code: str) -> str:
"""Generate hash for code to enable caching."""
return hashlib.md5(code.encode()).hexdigest()
def _get_cache_path(self, code_hash: str, quality: str) -> str:
"""Get cache file path for given code hash and quality."""
return os.path.join(self.cache_dir, f"{code_hash}_{quality}.mp4")
def _is_cached(self, code: str, quality: str) -> Optional[str]:
"""Check if rendered video exists in cache."""
if not self.enable_caching:
return None
code_hash = self._get_code_hash(code)
cache_path = self._get_cache_path(code_hash, quality)
if os.path.exists(cache_path):
print(f"Cache hit for code hash {code_hash[:8]}...")
self.render_stats['cache_hits'] += 1
return cache_path
return None
def _save_to_cache(self, code: str, quality: str, video_path: str):
"""Save rendered video to cache."""
if not self.enable_caching or not os.path.exists(video_path):
return
code_hash = self._get_code_hash(code)
cache_path = self._get_cache_path(code_hash, quality)
try:
shutil.copy2(video_path, cache_path)
print(f"Cached render for hash {code_hash[:8]}...")
except Exception as e:
print(f"Warning: Could not cache render: {e}")
async def render_scene_optimized(self, code: str, file_prefix: str, curr_scene: int,
curr_version: int, code_dir: str, media_dir: str,
quality: str = None, max_retries: int = 3,
use_visual_fix_code=False, visual_self_reflection_func=None,
banned_reasonings=None, scene_trace_id=None, topic=None,
session_id=None, code_generator=None,
scene_implementation=None, description=None,
scene_outline=None) -> tuple:
"""Optimized scene rendering with intelligent error handling and code generation fixes."""
start_time = time.time()
quality = quality or self.default_quality
current_code = code
# Check cache first
cached_video = self._is_cached(current_code, quality)
if cached_video:
# Copy cached video to expected location
expected_path = self._get_expected_video_path(file_prefix, curr_scene, curr_version, media_dir)
os.makedirs(os.path.dirname(expected_path), exist_ok=True)
shutil.copy2(cached_video, expected_path)
elapsed = time.time() - start_time
print(f"Scene {curr_scene} rendered from cache in {elapsed:.2f}s")
return current_code, None
# Optimize manim command for speed
file_path = os.path.join(code_dir, f"{file_prefix}_scene{curr_scene}_v{curr_version}.py")
# Write optimized code file
await self._write_code_file_async(file_path, current_code)
# Build optimized manim command
manim_cmd = self._build_optimized_command(file_path, media_dir, quality)
retries = 0
while retries < max_retries:
try:
print(f"🎬 Rendering scene {curr_scene} (quality: {quality}, attempt: {retries + 1})")
# Execute manim with optimizations
result = await asyncio.to_thread(
self._run_manim_optimized,
manim_cmd,
file_path
)
if result.returncode != 0:
raise Exception(result.stderr)
# Find the rendered video
video_path = self._find_rendered_video(file_prefix, curr_scene, curr_version, media_dir)
# Save to cache
self._save_to_cache(current_code, quality, video_path)
# Visual fix code processing
if use_visual_fix_code and visual_self_reflection_func and banned_reasonings:
current_code = await self._process_visual_fix(
current_code, video_path, file_prefix, curr_scene, curr_version,
code_dir, visual_self_reflection_func, banned_reasonings,
scene_trace_id, topic, session_id
)
elapsed = time.time() - start_time
self.render_stats['total_renders'] += 1
self.render_stats['total_time'] += elapsed
self.render_stats['average_time'] = self.render_stats['total_time'] / self.render_stats['total_renders']
print(f"Scene {curr_scene} rendered successfully in {elapsed:.2f}s")
print(f"Average render time: {self.render_stats['average_time']:.2f}s")
return current_code, None
except Exception as e:
print(f"Render attempt {retries + 1} failed: {e}")
# Save error log
error_log_path = os.path.join(code_dir, f"{file_prefix}_scene{curr_scene}_v{curr_version}_error_{retries}.log")
await self._write_error_log_async(error_log_path, str(e), retries)
# Instead of blind retry, try to fix the code if we have a code generator
if code_generator and scene_implementation and retries < max_retries - 1:
print(f"πŸ”§ Attempting to fix code using CodeGenerator (attempt {retries + 1})")
try:
fixed_code, fix_log = code_generator.fix_code_errors(
implementation_plan=scene_implementation,
code=current_code,
error=str(e),
scene_trace_id=scene_trace_id,
topic=topic,
scene_number=curr_scene,
session_id=session_id
)
if fixed_code and fixed_code != current_code:
print(f"✨ Code fix generated, updating for next attempt")
current_code = fixed_code
curr_version += 1
# Update file path and write fixed code
file_path = os.path.join(code_dir, f"{file_prefix}_scene{curr_scene}_v{curr_version}.py")
await self._write_code_file_async(file_path, current_code)
# Update manim command for new file
manim_cmd = self._build_optimized_command(file_path, media_dir, quality)
# Log the fix
fix_log_path = os.path.join(code_dir, f"{file_prefix}_scene{curr_scene}_v{curr_version}_fix_log.txt")
await self._write_error_log_async(fix_log_path, fix_log or "Code fix applied", 0)
else:
print(f"⚠️ Code generator returned same or empty code, doing standard retry")
except Exception as fix_error:
print(f"❌ Code fix attempt failed: {fix_error}")
# Fall back to standard retry behavior
retries += 1
if retries < max_retries:
await asyncio.sleep(1) # Brief delay before retry
else:
return current_code, str(e)
return current_code, f"Failed after {max_retries} attempts"
def _build_optimized_command(self, file_path: str, media_dir: str, quality: str) -> List[str]:
"""Build optimized manim command with performance flags."""
quality_preset = self.quality_presets.get(quality, self.quality_presets['medium'])
cmd = [
"manim",
"render",
quality_preset['flag'], # Quality setting
file_path,
"--media_dir", media_dir,
"--fps", str(quality_preset['fps'])
]
# Add caching option (only disable if needed)
if not self.enable_caching:
cmd.append("--disable_caching")
# Add GPU acceleration if available and enabled
if self.use_gpu_acceleration:
cmd.extend(["--renderer", "opengl"])
# Preview mode optimizations
if self.preview_mode or quality == 'preview':
cmd.extend([
"--save_last_frame", # Only render final frame for quick preview
"--write_to_movie" # Skip unnecessary file operations
])
return cmd
def _run_manim_optimized(self, cmd: List[str], file_path: str) -> subprocess.CompletedProcess:
"""Run manim command with optimizations."""
env = os.environ.copy()
# Optimize environment for performance
env.update({
'MANIM_DISABLE_CACHING': 'false' if self.enable_caching else 'true',
'MANIM_VERBOSITY': 'WARNING', # Reduce log verbosity
'OMP_NUM_THREADS': str(os.cpu_count()), # Use all CPU cores
'MANIM_RENDERER_TIMEOUT': '300' # 5 minute timeout
})
return subprocess.run(
cmd,
capture_output=True,
text=True,
env=env,
timeout=300 # 5 minute timeout
)
async def _write_code_file_async(self, file_path: str, code: str):
"""Asynchronously write code file."""
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# Add optimization hints to the code
optimized_code = self._optimize_code_for_rendering(code)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(optimized_code)
def _optimize_code_for_rendering(self, code: str) -> str:
"""Add optimization hints to Manim code."""
optimizations = [
"",
"# Manim rendering optimizations",
"from manim import config",
"config.frame_rate = 30 # Balanced frame rate",
"config.pixel_height = 720 # Optimized resolution",
"config.pixel_width = 1280",
""
]
# Find the end of manim imports specifically
lines = code.split('\n')
manim_import_end = 0
for i, line in enumerate(lines):
# Look for manim-related imports
if (line.strip().startswith('from manim') or
line.strip().startswith('import manim') or
line.strip().startswith('from manim_')):
manim_import_end = i + 1
# If no manim imports found, look for the end of all imports
if manim_import_end == 0:
for i, line in enumerate(lines):
if (line.strip().startswith(('from ', 'import ')) and
not line.strip().startswith('#')):
manim_import_end = i + 1
# Insert optimization code after manim imports
lines[manim_import_end:manim_import_end] = optimizations
return '\n'.join(lines)
async def _write_error_log_async(self, file_path: str, error: str, attempt: int):
"""Asynchronously write error log."""
timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
log_content = f"[{timestamp}] Attempt {attempt + 1}: {error}\n"
with open(file_path, 'a', encoding='utf-8') as f:
f.write(log_content)
def _get_expected_video_path(self, file_prefix: str, scene: int, version: int, media_dir: str) -> str:
"""Get expected path for rendered video."""
return os.path.join(
media_dir, "videos", f"{file_prefix}_scene{scene}_v{version}",
"1080p60", f"{file_prefix}_scene{scene}_v{version}.mp4"
)
def _find_rendered_video(self, file_prefix: str, scene: int, version: int, media_dir: str) -> str:
"""Find the rendered video file."""
video_dir = os.path.join(media_dir, "videos", f"{file_prefix}_scene{scene}_v{version}")
# Look in quality-specific subdirectories
for quality_dir in ["1080p60", "720p30", "480p15"]:
search_dir = os.path.join(video_dir, quality_dir)
if os.path.exists(search_dir):
for file in os.listdir(search_dir):
if file.endswith('.mp4'):
return os.path.join(search_dir, file)
raise FileNotFoundError(f"No rendered video found for scene {scene} version {version}")
async def _process_visual_fix(self, code: str, video_path: str, file_prefix: str,
scene: int, version: int, code_dir: str,
visual_self_reflection_func, banned_reasonings: List[str],
scene_trace_id: str, topic: str, session_id: str) -> str:
"""Process visual fix code with optimization."""
# For Gemini/Vertex AI models, pass the video directly
if hasattr(self, 'scene_model') and self.scene_model.model_name.startswith(('gemini/', 'vertex_ai/')):
media_input = video_path
else:
# For other models, create optimized snapshot
media_input = await self._create_optimized_snapshot(topic, scene, version)
new_code, log = visual_self_reflection_func(
code, media_input, scene_trace_id=scene_trace_id,
topic=topic, scene_number=scene, session_id=session_id
)
# Save visual fix log
log_path = os.path.join(code_dir, f"{file_prefix}_scene{scene}_v{version}_vfix_log.txt")
await self._write_error_log_async(log_path, log, 0)
# Check for termination markers
if "<LGTM>" in new_code or any(word in new_code for word in banned_reasonings):
return code
# Save updated code
new_version = version + 1
new_code_path = os.path.join(code_dir, f"{file_prefix}_scene{scene}_v{new_version}.py")
await self._write_code_file_async(new_code_path, new_code)
print(f"Visual fix code saved to scene{scene}/code/{file_prefix}_scene{scene}_v{new_version}.py")
return new_code
async def render_multiple_scenes_parallel(self, scene_configs: List[Dict],
max_concurrent: int = None) -> List[tuple]:
"""Render multiple scenes in parallel with optimized resource management."""
max_concurrent = max_concurrent or self.max_concurrent_renders
print(f"Starting parallel rendering of {len(scene_configs)} scenes (max concurrent: {max_concurrent})")
semaphore = asyncio.Semaphore(max_concurrent)
async def render_single_scene(config):
async with semaphore:
return await self.render_scene_optimized(**config)
start_time = time.time()
# Execute all renders concurrently
tasks = [render_single_scene(config) for config in scene_configs]
results = await asyncio.gather(*tasks, return_exceptions=True)
elapsed = time.time() - start_time
successful = sum(1 for r in results if not isinstance(r, Exception) and r[1] is None)
print(f"Parallel rendering completed in {elapsed:.2f}s")
print(f"Success rate: {successful}/{len(scene_configs)} scenes")
print(f"Cache hit rate: {self.render_stats['cache_hits']}/{self.render_stats['total_renders']} ({self.render_stats['cache_hits']/max(1,self.render_stats['total_renders'])*100:.1f}%)")
return results
async def _create_optimized_snapshot(self, topic: str, scene_number: int,
version_number: int) -> Image.Image:
"""Create optimized snapshot with async processing."""
file_prefix = re.sub(r'[^a-z0-9_]+', '_', topic.lower())
video_folder_path = os.path.join(
self.output_dir, file_prefix, "media", "videos",
f"{file_prefix}_scene{scene_number}_v{version_number}", "1080p60"
)
# Find video file
video_files = [f for f in os.listdir(video_folder_path) if f.endswith('.mp4')]
if not video_files:
raise FileNotFoundError(f"No mp4 files found in {video_folder_path}")
video_path = os.path.join(video_folder_path, video_files[0])
# Create snapshot asynchronously
return await asyncio.to_thread(
lambda: image_with_most_non_black_space(
get_images_from_video(video_path),
return_type="image"
)
)
async def combine_videos_optimized(self, topic: str, use_hardware_acceleration: bool = False) -> str:
"""Optimized video combination with hardware acceleration and parallel processing."""
start_time = time.time()
file_prefix = re.sub(r'[^a-z0-9_]+', '_', topic.lower())
print(f"🎬 Starting optimized video combination for topic: {topic}")
print(f"πŸ–₯️ GPU Acceleration: {'Enabled' if use_hardware_acceleration else 'Disabled (CPU only)'}")
# Prepare paths
video_output_dir = os.path.join(self.output_dir, file_prefix)
output_video_path = os.path.join(video_output_dir, f"{file_prefix}_combined.mp4")
output_srt_path = os.path.join(video_output_dir, f"{file_prefix}_combined.srt")
# Check if already exists
if os.path.exists(output_video_path):
print(f"Combined video already exists at {output_video_path}")
return output_video_path
# Get scene information
scene_videos, scene_subtitles = await self._gather_scene_files_async(file_prefix)
if not scene_videos:
raise ValueError("No scene videos found to combine")
print(f"πŸ“Ή Found {len(scene_videos)} scene videos to combine")
try:
if ffmpeg is None:
print("⚠️ ffmpeg-python not available, using direct FFmpeg fallback...")
fallback_output = await self._fallback_video_combination(scene_videos, output_video_path)
print(f"βœ… Direct FFmpeg combination successful: {fallback_output}")
return fallback_output
# Analyze videos in parallel
print("πŸ” Analyzing video properties...")
analysis_tasks = [
asyncio.to_thread(self._analyze_video, video)
for video in scene_videos
]
video_info = await asyncio.gather(*analysis_tasks)
has_audio = [info['has_audio'] for info in video_info]
print(f"🎡 Audio tracks found: {sum(has_audio)}/{len(scene_videos)} videos")
# Build optimized ffmpeg command
if any(has_audio):
print("🎡 Combining videos with audio tracks...")
await self._combine_with_audio_optimized(
scene_videos, video_info, output_video_path, use_hardware_acceleration
)
else:
print("πŸ”‡ Combining videos without audio...")
await self._combine_without_audio_optimized(
scene_videos, output_video_path, use_hardware_acceleration
)
# Verify the output file was created and is valid
if not os.path.exists(output_video_path):
raise FileNotFoundError(f"Output video was not created: {output_video_path}")
# Check if the video file is valid
file_size = os.path.getsize(output_video_path)
if file_size < 1024: # Less than 1KB is probably invalid
raise ValueError(f"Output video file seems invalid (size: {file_size} bytes)")
print(f"βœ… Video file created successfully (size: {file_size / (1024*1024):.2f} MB)")
# Combine subtitles if available
if scene_subtitles:
print("πŸ“ Combining subtitles...")
await self._combine_subtitles_async(scene_subtitles, scene_videos, output_srt_path)
elapsed = time.time() - start_time
print(f"πŸŽ‰ Video combination completed in {elapsed:.2f}s")
print(f"πŸ“ Output: {output_video_path}")
return output_video_path
except Exception as e:
print(f"❌ Error in optimized video combination: {e}")
print("πŸ”§ Attempting fallback video combination...")
# Fallback to simple concatenation
try:
fallback_output = await self._fallback_video_combination(scene_videos, output_video_path)
print(f"βœ… Fallback combination successful: {fallback_output}")
return fallback_output
except Exception as fallback_error:
print(f"❌ Fallback combination also failed: {fallback_error}")
traceback.print_exc()
raise
async def _gather_scene_files_async(self, file_prefix: str) -> tuple:
"""Asynchronously gather scene video and subtitle files."""
search_path = os.path.join(self.output_dir, file_prefix, "media", "videos")
# Get scene count
scene_outline_path = os.path.join(self.output_dir, file_prefix, f"{file_prefix}_scene_outline.txt")
with open(scene_outline_path) as f:
plan = f.read()
scene_outline_match = re.search(r'(<SCENE_OUTLINE>.*?</SCENE_OUTLINE>)', plan, re.DOTALL)
if not scene_outline_match:
print(f"No scene outline found in plan: {plan[:200]}...")
return []
scene_outline = scene_outline_match.group(1)
scene_count = len(re.findall(r'<SCENE_(\d+)>[^<]', scene_outline))
# Find scene files in parallel
tasks = [
asyncio.to_thread(self._find_scene_files, search_path, file_prefix, scene_num)
for scene_num in range(1, scene_count + 1)
]
results = await asyncio.gather(*tasks)
scene_videos = []
scene_subtitles = []
for video, subtitle in results:
if video:
scene_videos.append(video)
scene_subtitles.append(subtitle)
return scene_videos, scene_subtitles
def _find_scene_files(self, search_path: str, file_prefix: str, scene_num: int) -> tuple:
"""Find video and subtitle files for a specific scene."""
scene_folders = []
for root, dirs, files in os.walk(search_path):
for dir in dirs:
if dir.startswith(f"{file_prefix}_scene{scene_num}"):
scene_folders.append(os.path.join(root, dir))
if not scene_folders:
return None, None
# Get latest version
scene_folders.sort(key=lambda f: int(f.split("_v")[-1]) if "_v" in f else 0)
folder = scene_folders[-1]
video_file = None
subtitle_file = None
quality_dirs = ["1080p60", "720p30", "480p15"]
for quality_dir in quality_dirs:
quality_path = os.path.join(folder, quality_dir)
if os.path.exists(quality_path):
for filename in os.listdir(quality_path):
if filename.endswith('.mp4') and not video_file:
video_file = os.path.join(quality_path, filename)
elif filename.endswith('.srt') and not subtitle_file:
subtitle_file = os.path.join(quality_path, filename)
break
return video_file, subtitle_file
def _analyze_video(self, video_path: str) -> Dict:
"""Analyze video properties for optimization."""
if ffmpeg is None:
# Fallback analysis using direct FFmpeg probe
import subprocess
import json
try:
cmd = [
'ffprobe',
'-v', 'quiet',
'-print_format', 'json',
'-show_streams',
video_path
]
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
probe_data = json.loads(result.stdout)
video_stream = next(stream for stream in probe_data['streams'] if stream['codec_type'] == 'video')
audio_streams = [stream for stream in probe_data['streams'] if stream['codec_type'] == 'audio']
return {
'path': video_path,
'duration': float(video_stream.get('duration', 0)),
'has_audio': len(audio_streams) > 0,
'width': int(video_stream.get('width', 1920)),
'height': int(video_stream.get('height', 1080)),
'fps': eval(video_stream.get('avg_frame_rate', '30/1'))
}
except Exception as e:
print(f"Warning: Could not analyze video {video_path}: {e}")
# Return default values
return {
'path': video_path,
'duration': 10.0, # Default duration
'has_audio': False,
'width': 1920,
'height': 1080,
'fps': 30
}
probe = ffmpeg.probe(video_path)
video_stream = next(stream for stream in probe['streams'] if stream['codec_type'] == 'video')
audio_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'audio']
return {
'path': video_path,
'duration': float(video_stream['duration']),
'has_audio': len(audio_streams) > 0,
'width': int(video_stream['width']),
'height': int(video_stream['height']),
'fps': eval(video_stream['avg_frame_rate'])
}
async def _combine_with_audio_optimized(self, scene_videos: List[str], video_info: List[Dict],
output_path: str, use_hardware_acceleration: bool):
"""Combine videos with audio using hardware acceleration."""
import ffmpeg
streams = []
for video_path, info in zip(scene_videos, video_info):
input_vid = ffmpeg.input(video_path)
if info['has_audio']:
streams.extend([input_vid['v'], input_vid['a']])
else:
# Add silent audio
silent_audio = ffmpeg.input(
f'anullsrc=channel_layout=stereo:sample_rate=44100',
f='lavfi', t=info['duration']
)['a']
streams.extend([input_vid['v'], silent_audio])
# Build optimized encoding options for maximum compatibility
encode_options = {
'c:v': 'libx264', # Use libx264 for maximum compatibility
'c:a': 'aac', # AAC audio codec
'preset': 'medium', # Balanced preset for good quality/speed
'crf': '23', # Good quality/speed balance
'pix_fmt': 'yuv420p', # Pixel format for maximum compatibility
'movflags': '+faststart', # Enable fast start for web playback
'r': '30', # Set frame rate to 30fps
'threads': '0', # Use all available threads
'profile:v': 'high', # H.264 profile for better compatibility
'level': '4.0' # H.264 level for broad device support
}
# Only use hardware acceleration if explicitly requested and working
if use_hardware_acceleration:
try:
# Test if NVENC is available by creating a simple test
test_cmd = ['ffmpeg', '-f', 'lavfi', '-i', 'testsrc=duration=1:size=320x240:rate=1',
'-c:v', 'h264_nvenc', '-f', 'null', '-']
test_result = subprocess.run(test_cmd, capture_output=True, text=True, timeout=10)
if test_result.returncode == 0:
encode_options.update({
'c:v': 'h264_nvenc',
'preset': 'fast', # NVENC preset
'profile:v': 'high',
'level': '4.0',
'rc': 'constqp', # Constant quality mode
'qp': '23' # Quality parameter
})
print("βœ… Using NVIDIA hardware acceleration")
else:
print("⚠️ NVIDIA hardware acceleration not available, using CPU encoding")
except Exception as e:
print(f"⚠️ Hardware acceleration test failed: {e}, using CPU encoding")
concat = ffmpeg.concat(*streams, v=1, a=1, unsafe=True)
# Run with progress monitoring
process = (
concat
.output(output_path, **encode_options)
.overwrite_output()
.run_async(pipe_stdout=True, pipe_stderr=True)
)
await self._monitor_ffmpeg_progress(process, "audio combination")
async def _combine_without_audio_optimized(self, scene_videos: List[str],
output_path: str, use_hardware_acceleration: bool):
"""Combine videos without audio using hardware acceleration."""
import ffmpeg
streams = [ffmpeg.input(video)['v'] for video in scene_videos]
# Build encoding options for maximum compatibility
encode_options = {
'c:v': 'libx264', # Use libx264 for maximum compatibility
'preset': 'medium', # Balanced preset
'crf': '20', # Good quality
'pix_fmt': 'yuv420p', # Pixel format for maximum compatibility
'movflags': '+faststart', # Enable fast start
'r': '30', # Set frame rate to 30fps
'threads': '0', # Use all available threads
'profile:v': 'high', # H.264 profile
'level': '4.0' # H.264 level
}
# Test hardware acceleration availability
if use_hardware_acceleration:
try:
# Test if NVENC is available
test_cmd = ['ffmpeg', '-f', 'lavfi', '-i', 'testsrc=duration=1:size=320x240:rate=1',
'-c:v', 'h264_nvenc', '-f', 'null', '-']
test_result = subprocess.run(test_cmd, capture_output=True, text=True, timeout=10)
if test_result.returncode == 0:
encode_options.update({
'c:v': 'h264_nvenc',
'preset': 'fast',
'profile:v': 'high',
'level': '4.0',
'rc': 'constqp',
'qp': '20'
})
print("βœ… Using NVIDIA hardware acceleration for video-only combination")
else:
print("⚠️ NVIDIA hardware acceleration not available, using CPU encoding")
except Exception as e:
print(f"⚠️ Hardware acceleration test failed: {e}, using CPU encoding")
concat = ffmpeg.concat(*streams, v=1, unsafe=True)
process = (
concat
.output(output_path, **encode_options)
.overwrite_output()
.run_async(pipe_stdout=True, pipe_stderr=True)
)
await self._monitor_ffmpeg_progress(process, "video combination")
async def _monitor_ffmpeg_progress(self, process, operation_name: str):
"""Monitor FFmpeg progress asynchronously."""
print(f"Starting {operation_name}...")
while True:
line = await asyncio.to_thread(process.stdout.readline)
if not line:
break
line = line.decode('utf-8')
if 'frame=' in line:
# Extract progress information
frame_match = re.search(r'frame=\s*(\d+)', line)
time_match = re.search(r'time=(\d+:\d+:\d+\.\d+)', line)
if frame_match and time_match:
frame = frame_match.group(1)
time_str = time_match.group(1)
print(f"\r⚑ Processing: frame={frame}, time={time_str}", end='', flush=True)
stdout, stderr = await asyncio.to_thread(process.communicate)
print(f"\n{operation_name} completed!")
if process.returncode != 0:
raise Exception(f"FFmpeg error: {stderr.decode('utf-8')}")
async def _combine_subtitles_async(self, scene_subtitles: List[str],
scene_videos: List[str], output_path: str):
"""Combine subtitles asynchronously."""
def combine_subtitles():
with open(output_path, 'w', encoding='utf-8') as outfile:
current_time_offset = 0
subtitle_index = 1
for srt_file, video_file in zip(scene_subtitles, scene_videos):
if srt_file is None:
continue
with open(srt_file, 'r', encoding='utf-8') as infile:
lines = infile.readlines()
i = 0
while i < len(lines):
line = lines[i].strip()
if line.isdigit():
outfile.write(f"{subtitle_index}\n")
subtitle_index += 1
i += 1
time_line = lines[i].strip()
start_time, end_time = time_line.split(' --> ')
def adjust_time(time_str, offset):
h, m, s = time_str.replace(',', '.').split(':')
total_seconds = float(h) * 3600 + float(m) * 60 + float(s) + offset
h = int(total_seconds // 3600)
m = int((total_seconds % 3600) // 60)
s = total_seconds % 60
return f"{h:02d}:{m:02d}:{s:06.3f}".replace('.', ',')
new_start = adjust_time(start_time, current_time_offset)
new_end = adjust_time(end_time, current_time_offset)
outfile.write(f"{new_start} --> {new_end}\n")
i += 1
while i < len(lines) and lines[i].strip():
outfile.write(lines[i])
i += 1
outfile.write('\n')
else:
i += 1
# Update time offset
import ffmpeg
probe = ffmpeg.probe(video_file)
duration = float(probe['streams'][0]['duration'])
current_time_offset += duration
await asyncio.to_thread(combine_subtitles)
print(f"Subtitles combined to {output_path}")
def get_performance_stats(self) -> Dict:
"""Get current performance statistics."""
return {
**self.render_stats,
'cache_hit_rate': self.render_stats['cache_hits'] / max(1, self.render_stats['total_renders']),
'cache_enabled': self.enable_caching,
'concurrent_renders': self.max_concurrent_renders
}
def cleanup_cache(self, max_age_days: int = 7):
"""Clean up old cache files."""
if not self.enable_caching:
return
import time
current_time = time.time()
max_age_seconds = max_age_days * 24 * 60 * 60
for file in os.listdir(self.cache_dir):
file_path = os.path.join(self.cache_dir, file)
if os.path.getmtime(file_path) < current_time - max_age_seconds:
os.remove(file_path)
print(f"Removed old cache file: {file}")
async def __aenter__(self):
"""Async context manager entry."""
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit."""
self.executor.shutdown(wait=True)
def render_scene(self, code: str, file_prefix: str, curr_scene: int,
curr_version: int, code_dir: str, media_dir: str,
use_visual_fix_code=False, visual_self_reflection_func=None,
banned_reasonings=None, scene_trace_id=None, topic=None,
session_id=None, code_generator=None, scene_implementation=None,
description=None, scene_outline=None) -> tuple:
"""Legacy render_scene method for backward compatibility."""
# Run the async method synchronously
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
result = loop.run_until_complete(
self.render_scene_optimized(
code=code,
file_prefix=file_prefix,
curr_scene=curr_scene,
curr_version=curr_version,
code_dir=code_dir,
media_dir=media_dir,
use_visual_fix_code=use_visual_fix_code,
visual_self_reflection_func=visual_self_reflection_func,
banned_reasonings=banned_reasonings,
scene_trace_id=scene_trace_id,
topic=topic,
session_id=session_id,
code_generator=code_generator,
scene_implementation=scene_implementation,
description=description,
scene_outline=scene_outline
)
)
return result
finally:
loop.close()
def combine_videos(self, topic: str) -> str:
"""Legacy combine_videos method for backward compatibility."""
# Run the async method synchronously
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
result = loop.run_until_complete(
self.combine_videos_optimized(topic=topic)
)
return result
finally:
loop.close()
async def _fallback_video_combination(self, scene_videos: List[str], output_path: str) -> str:
"""Simple fallback video combination using direct FFmpeg commands."""
print("πŸ”§ Using fallback video combination method...")
# Create a temporary file list for concat demuxer
temp_dir = tempfile.mkdtemp()
file_list_path = os.path.join(temp_dir, "file_list.txt")
try:
# Write file list for concat demuxer
with open(file_list_path, 'w') as f:
for video in scene_videos:
# Ensure proper path format for concat demuxer
video_path = os.path.abspath(video).replace('\\', '/')
f.write(f"file '{video_path}'\n")
print(f"πŸ“ Created file list: {file_list_path}")
print(f"🎬 Combining {len(scene_videos)} videos using direct FFmpeg...")
# Use direct FFmpeg command for maximum compatibility
cmd = [
'ffmpeg',
'-f', 'concat',
'-safe', '0',
'-i', file_list_path,
'-c:v', 'libx264',
'-c:a', 'aac',
'-preset', 'fast',
'-crf', '25',
'-pix_fmt', 'yuv420p',
'-movflags', '+faststart',
'-avoid_negative_ts', 'make_zero',
'-y', # Overwrite output file
output_path
]
print(f"πŸ”§ Running command: {' '.join(cmd)}")
# Run the command
process = await asyncio.create_subprocess_exec(
*cmd,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE
)
# Monitor progress
async def read_stderr():
stderr_output = []
while True:
line = await process.stderr.readline()
if not line:
break
line_str = line.decode('utf-8').strip()
stderr_output.append(line_str)
if 'frame=' in line_str:
frame_match = re.search(r'frame=\s*(\d+)', line_str)
time_match = re.search(r'time=(\d+:\d+:\d+\.\d+)', line_str)
if frame_match and time_match:
frame = frame_match.group(1)
time_str = time_match.group(1)
print(f"\rπŸ”§ Fallback processing: frame={frame}, time={time_str}", end='', flush=True)
return stderr_output
# Wait for completion
stderr_task = asyncio.create_task(read_stderr())
await process.wait()
stderr_output = await stderr_task
print(f"\nπŸ”§ Fallback combination completed!")
if process.returncode != 0:
error_msg = '\n'.join(stderr_output)
print(f"❌ FFmpeg error output:\n{error_msg}")
raise Exception(f"Direct FFmpeg command failed with return code {process.returncode}")
# Verify output
if not os.path.exists(output_path):
raise FileNotFoundError(f"Fallback output video was not created: {output_path}")
file_size = os.path.getsize(output_path)
if file_size < 1024:
raise ValueError(f"Fallback output video file seems invalid (size: {file_size} bytes)")
print(f"βœ… Fallback video created successfully (size: {file_size / (1024*1024):.2f} MB)")
return output_path
finally:
# Clean up temporary files
try:
if os.path.exists(file_list_path):
os.remove(file_list_path)
os.rmdir(temp_dir)
except Exception as e:
print(f"⚠️ Could not clean up temp files: {e}")
# Backward compatibility alias
VideoRenderer = OptimizedVideoRenderer