# Example Gallery This gallery showcases various animations for popular algorithms, created using the manim_dsa plugin. Each example is accompanied by code snippets and a brief explanation to help you understand how the algorithms are visualized and how to implement them in your own scenes. ## Bubble Sort Bubble Sort is a simple sorting algorithm that repeatedly steps through the list to be sorted, compares adjacent elements, and swaps them if they are in the wrong order. The process continues until the list is completely sorted. Below is an animated visualization of Bubble Sort, where the comparison and swapping of elements are highlighted to make it easier to understand the sorting process. The animation also marks the sorted elements to clearly indicate progress.
Example: BubbleSort ¶
```python from manim import * from manim_dsa import * class BubbleSort(Scene): def bubblesort(self, arr): mArray = ( MArray(arr, style=MArrayStyle.BLUE) .add_indexes() ) self.play(Create(mArray)) for i in range(len(arr)): for j in range(0, len(arr) - i - 1): # Highlight the elements being compared self.play( mArray[j].animate.highlight(), mArray[j+1].animate.highlight() ) # Unhighlight after comparison self.play( mArray[j].animate.unhighlight(), mArray[j+1].animate.unhighlight() ) # Swap if necessary if arr[j] > arr[j + 1]: self.play(mArray.animate.swap(j, j+1)) arr[j], arr[j+1] = arr[j+1], arr[j] # Mark sorted element self.play(mArray[len(arr) - i - 1].square.animate.set_fill(GREEN)) def construct(self): arr = [39, 85, 10, 2, 18] title = Text("Bubble Sort", font="Cascadia Code").scale(1.5).to_edge(UP) self.play(Create(title)) self.bubblesort(arr) ```from manim_dsa import \* class BubbleSort(Scene): def bubblesort(self, arr): mArray = ( MArray(arr, style=MArrayStyle.BLUE) .add_indexes() ) self.play(Create(mArray)) for i in range(len(arr)): for j in range(0, len(arr) - i - 1): # Highlight the elements being compared self.play( mArray[j].animate.highlight(), mArray[j+1].animate.highlight() ) # Unhighlight after comparison self.play( mArray[j].animate.unhighlight(), mArray[j+1].animate.unhighlight() ) # Swap if necessary if arr[j] > arr[j + 1]: self.play(mArray.animate.swap(j, j+1)) arr[j], arr[j+1] = arr[j+1], arr[j] # Mark sorted element self.play(mArray[len(arr) - i - 1].square.animate.set_fill(GREEN)) def construct(self): arr = [39, 85, 10, 2, 18] title = Text("Bubble Sort", font="Cascadia Code").scale(1.5).to_edge(UP) self.play(Create(title)) self.bubblesort(arr)
Example: IterativeDfs ¶
```python from manim import * from manim_dsa import * class IterativeDfs(Scene): def dfs(self, graph, start): mGraph = ( MGraph(graph, style=MGraphStyle.PURPLE) .scale(0.7).node_layout().to_edge(LEFT).shift(DR) ) mStack = ( MStack(style=MStackStyle.BLUE) .scale(0.7).to_edge(RIGHT).shift(DL) ) self.play(Create(mGraph)) self.play(Create(mStack)) visited = {} stack = [start] prevList = [None] self.play(mStack.animate.append(start)) for node in graph: visited[node] = False while stack: node = stack.pop() self.play(mStack.animate.pop()) prev = prevList.pop() if prev and not visited[node]: self.play(mGraph[(prev, node)].animate.highlight()) if not visited[node]: self.play(mGraph[node].animate.highlight()) visited[node] = True for neighbor in graph[node]: if not visited[neighbor]: stack.append(neighbor) self.play(mStack.animate.append(neighbor)) prevList.append(node) def construct(self): graph = { '0': ['1', '2'], '1': ['0', '2', '3', '4'], '2': ['0', '1'], '3': ['1', '5'], '4': ['1'], '5': ['3', '6', '7', '8'], '6': ['5'], '7': ['5', '8'], '8': ['5', '7', '9'], '9': ['8'] } start = '0' title = Text("Depth-First Search in a graph", font="Cascadia Code").to_edge(UP) self.play(Create(title)) self.dfs(graph, start) self.wait() ```from manim_dsa import \* class IterativeDfs(Scene): def dfs(self, graph, start): mGraph = ( MGraph(graph, style=MGraphStyle.PURPLE) .scale(0.7).node_layout().to_edge(LEFT).shift(DR) ) mStack = ( MStack(style=MStackStyle.BLUE) .scale(0.7).to_edge(RIGHT).shift(DL) ) self.play(Create(mGraph)) self.play(Create(mStack)) visited = {} stack = [start] prevList = [None] self.play(mStack.animate.append(start)) for node in graph: visited[node] = False while stack: node = stack.pop() self.play(mStack.animate.pop()) prev = prevList.pop() if prev and not visited[node]: self.play(mGraph[(prev, node)].animate.highlight()) if not visited[node]: self.play(mGraph[node].animate.highlight()) visited[node] = True for neighbor in graph[node]: if not visited[neighbor]: stack.append(neighbor) self.play(mStack.animate.append(neighbor)) prevList.append(node) def construct(self): graph = { '0': ['1', '2'], '1': ['0', '2', '3', '4'], '2': ['0', '1'], '3': ['1', '5'], '4': ['1'], '5': ['3', '6', '7', '8'], '6': ['5'], '7': ['5', '8'], '8': ['5', '7', '9'], '9': ['8'] } start = '0' title = Text("Depth-First Search in a graph", font="Cascadia Code").to_edge(UP) self.play(Create(title)) self.dfs(graph, start) self.wait()
Example: RecursiveDfs ¶
```python from manim import * from manim_dsa import * class RecursiveDfs(Scene): def dfs_helper(self, graph, mGraph, visited, prev, root): visited[root] = True self.play(mGraph[root].animate.highlight()) for adj in graph[root]: if(not visited[adj]): self.play(mGraph[(root, adj)].animate.highlight()) self.dfs_helper(graph, mGraph, visited, prev, adj) self.play(mGraph[(root, adj)].animate.unhighlight()) self.play(mGraph[root].animate.unhighlight()) def dfs(self, graph, mGraph): visited = {} for node in graph: visited[node] = False for node in graph: if(not visited[node]): self.dfs_helper(graph, mGraph, visited, None, node) def construct(self): graph = { '0': ['1', '2'], '1': ['0', '2', '3', '4'], '2': ['0', '1'], '3': ['1', '5'], '4': ['1'], '5': ['3', '6', '7', '8'], '6': ['5'], '7': ['5', '8'], '8': ['5', '7', '9'], '9': ['8'] } nodes_and_positions = { '0': LEFT * 6, '1': LEFT * 4 + UP, '2': LEFT * 4 + DOWN, '3': LEFT * 2, '4': LEFT * 2 + UP * 2, '5': ORIGIN, '6': LEFT * 2 + DOWN * 2, '7': RIGHT * 2 + DOWN * 2, '8': RIGHT * 2 + UP * 2, '9': RIGHT * 4 + UP * 2, } mGraph = MGraph(graph, nodes_and_positions, style=MGraphStyle.BLUE).move_to(ORIGIN).shift(DOWN/2) title = Text("Depth-First Search in a graph", font="Cascadia Code").to_edge(UP) self.play(Create(title)) self.play(Create(mGraph)) self.dfs(graph, mGraph) self.wait() ```from manim_dsa import \* class RecursiveDfs(Scene): def dfs_helper(self, graph, mGraph, visited, prev, root): visited[root] = True self.play(mGraph[root].animate.highlight()) for adj in graph[root]: if(not visited[adj]): self.play(mGraph[(root, adj)].animate.highlight()) self.dfs_helper(graph, mGraph, visited, prev, adj) self.play(mGraph[(root, adj)].animate.unhighlight()) self.play(mGraph[root].animate.unhighlight()) def dfs(self, graph, mGraph): visited = {} for node in graph: visited[node] = False for node in graph: if(not visited[node]): self.dfs_helper(graph, mGraph, visited, None, node) def construct(self): graph = { '0': ['1', '2'], '1': ['0', '2', '3', '4'], '2': ['0', '1'], '3': ['1', '5'], '4': ['1'], '5': ['3', '6', '7', '8'], '6': ['5'], '7': ['5', '8'], '8': ['5', '7', '9'], '9': ['8'] } nodes_and_positions = { '0': LEFT \* 6, '1': LEFT \* 4 + UP, '2': LEFT \* 4 + DOWN, '3': LEFT \* 2, '4': LEFT \* 2 + UP \* 2, '5': ORIGIN, '6': LEFT \* 2 + DOWN \* 2, '7': RIGHT \* 2 + DOWN \* 2, '8': RIGHT \* 2 + UP \* 2, '9': RIGHT \* 4 + UP \* 2, } mGraph = MGraph(graph, nodes_and_positions, style=MGraphStyle.BLUE).move_to(ORIGIN).shift(DOWN/2) title = Text("Depth-First Search in a graph", font="Cascadia Code").to_edge(UP) self.play(Create(title)) self.play(Create(mGraph)) self.dfs(graph, mGraph) self.wait()
Example: Prim ¶
```python from manim import * from manim_dsa import * import heapq class Prim(Scene): def prim(self, graph, nodes_and_positions, start): pq = [] visited = {} mGraph = MGraph(graph, nodes_and_positions, style=MGraphStyle.PURPLE).move_to(ORIGIN) self.play(Create(mGraph)) for node in graph: visited[node] = False res = 0 heapq.heappush(pq, (0, None, start)) while pq: wt, prev_node, u = heapq.heappop(pq) if visited[u]: self.play(mGraph[(prev_node, u)].animate.highlight(RED)) continue visited[u] = True res += wt if prev_node is not None: self.play(mGraph[(prev_node, u)].animate.highlight(GREEN)) self.play(mGraph[u].animate.highlight(GREEN)) for adj in graph[u]: v, weight = adj if not visited[v]: heapq.heappush(pq, (weight, u, v)) self.play(mGraph[(u, v)].animate.highlight(BLUE)) return res def construct(self): graph = { '0': [('1', 2), ('2', 4)], '1': [('0', 2), ('2', 1), ('3', 5), ('4', 5)], '2': [('0', 4), ('1', 1)], '3': [('1', 5), ('5', 2)], '4': [('1', 5)], '5': [('3', 2), ('6', 7), ('7', 2), ('8', 1)], '6': [('5', 7)], '7': [('5', 2), ('8', 6)], '8': [('5', 1), ('7', 6), ('9', 3)], '9': [('8', 3)] } nodes_and_positions = { '0': LEFT * 6, '1': LEFT * 4 + UP, '2': LEFT * 4 + DOWN, '3': LEFT * 2, '4': LEFT * 2 + UP * 2, '5': ORIGIN, '6': LEFT * 2 + DOWN * 2, '7': RIGHT * 2 + DOWN * 2, '8': RIGHT * 2 + UP * 2, '9': RIGHT * 4 + UP * 2, } title = ( Text("Prim's Algorithm for Minimum Spanning Tree", font="Cascadia Code") .scale(0.7).to_edge(UP) ) self.play(Create(title)) total_weight = self.prim(graph, nodes_and_positions, '0') text = ( Text("Total: " + str(total_weight), font="Cascadia Code") .to_edge(DOWN) ) self.play(Create(text)) self.wait() ```from manim_dsa import \* import heapq class Prim(Scene): def prim(self, graph, nodes_and_positions, start): pq = [] visited = {} mGraph = MGraph(graph, nodes_and_positions, style=MGraphStyle.PURPLE).move_to(ORIGIN) self.play(Create(mGraph)) for node in graph: visited[node] = False res = 0 heapq.heappush(pq, (0, None, start)) while pq: wt, prev_node, u = heapq.heappop(pq) if visited[u]: self.play(mGraph[(prev_node, u)].animate.highlight(RED)) continue visited[u] = True res += wt if prev_node is not None: self.play(mGraph[(prev_node, u)].animate.highlight(GREEN)) self.play(mGraph[u].animate.highlight(GREEN)) for adj in graph[u]: v, weight = adj if not visited[v]: heapq.heappush(pq, (weight, u, v)) self.play(mGraph[(u, v)].animate.highlight(BLUE)) return res def construct(self): graph = { '0': [('1', 2), ('2', 4)], '1': [('0', 2), ('2', 1), ('3', 5), ('4', 5)], '2': [('0', 4), ('1', 1)], '3': [('1', 5), ('5', 2)], '4': [('1', 5)], '5': [('3', 2), ('6', 7), ('7', 2), ('8', 1)], '6': [('5', 7)], '7': [('5', 2), ('8', 6)], '8': [('5', 1), ('7', 6), ('9', 3)], '9': [('8', 3)] } nodes_and_positions = { '0': LEFT \* 6, '1': LEFT \* 4 + UP, '2': LEFT \* 4 + DOWN, '3': LEFT \* 2, '4': LEFT \* 2 + UP \* 2, '5': ORIGIN, '6': LEFT \* 2 + DOWN \* 2, '7': RIGHT \* 2 + DOWN \* 2, '8': RIGHT \* 2 + UP \* 2, '9': RIGHT \* 4 + UP \* 2, } title = ( Text("Prim's Algorithm for Minimum Spanning Tree", font="Cascadia Code") .scale(0.7).to_edge(UP) ) self.play(Create(title)) total_weight = self.prim(graph, nodes_and_positions, '0') text = ( Text("Total: " + str(total_weight), font="Cascadia Code") .to_edge(DOWN) ) self.play(Create(text)) self.wait()
Example: Kruskal ¶
```python from manim import * from manim_dsa import * import heapq class Kruskal(Scene): def find(self, parent, i): if parent[i] == i: return i return self.find(parent, parent[i]) def union(self, parent, rank, x, y): xroot = self.find(parent, x) yroot = self.find(parent, y) if rank[xroot] < rank[yroot]: parent[xroot] = yroot elif rank[xroot] > rank[yroot]: parent[yroot] = xroot else: parent[yroot] = xroot rank[xroot] += 1 def kruskal(self, graph, nodes_and_positions): mGraph = MGraph(graph, nodes_and_positions, style=MGraphStyle.PURPLE).move_to(ORIGIN) self.play(Create(mGraph)) edges = [] for u in graph: for v, weight in graph[u]: if (weight, u, v) not in edges and (weight, v, u) not in edges: edges.append((weight, u, v)) edges.sort() parent = {} rank = {} for node in graph: parent[node] = node rank[node] = 0 mst_weight = 0 for edge in edges: wt, u, v = edge x = self.find(parent, u) y = self.find(parent, v) if x != y: self.play(mGraph[(u, v)].animate.highlight(GREEN, 12)) mst_weight += wt self.union(parent, rank, x, y) else: self.play(mGraph[(u, v)].animate.highlight(RED, 12)) return mst_weight def construct(self): graph = { '0': [('1', 2), ('2', 4)], '1': [('0', 2), ('2', 1), ('3', 5), ('4', 5)], '2': [('0', 4), ('1', 1)], '3': [('1', 5), ('5', 2)], '4': [('1', 5)], '5': [('3', 2), ('6', 7), ('7', 2), ('8', 1)], '6': [('5', 7)], '7': [('5', 2), ('8', 6)], '8': [('5', 1), ('7', 6), ('9', 3)], '9': [('8', 3)] } nodes_and_positions = { '0': LEFT * 6, '1': LEFT * 4 + UP * 2, '2': LEFT * 4 + DOWN * 2, '3': LEFT * 2, '4': LEFT * 2 + UP * 2, '5': ORIGIN + RIGHT, '6': LEFT + DOWN * 2, '7': RIGHT * 3 + DOWN * 2, '8': RIGHT * 3 + UP * 2, '9': RIGHT * 5 + UP * 2, } title = Text("Kruskal’s Algorithm for Minimum Spanning Tree", font="Cascadia Code").scale(0.7).to_edge(UP) self.play(Create(title)) total_weight = self.kruskal(graph, nodes_and_positions) text = Text("Total: " + str(total_weight), font="Cascadia Code").to_edge(DOWN) self.play(Create(text)) self.wait() ```from manim_dsa import \* import heapq class Kruskal(Scene): def find(self, parent, i): if parent[i] == i: return i return self.find(parent, parent[i]) def union(self, parent, rank, x, y): xroot = self.find(parent, x) yroot = self.find(parent, y) if rank[xroot] < rank[yroot]: parent[xroot] = yroot elif rank[xroot] > rank[yroot]: parent[yroot] = xroot else: parent[yroot] = xroot rank[xroot] += 1 def kruskal(self, graph, nodes_and_positions): mGraph = MGraph(graph, nodes_and_positions, style=MGraphStyle.PURPLE).move_to(ORIGIN) self.play(Create(mGraph)) edges = [] for u in graph: for v, weight in graph[u]: if (weight, u, v) not in edges and (weight, v, u) not in edges: edges.append((weight, u, v)) edges.sort() parent = {} rank = {} for node in graph: parent[node] = node rank[node] = 0 mst_weight = 0 for edge in edges: wt, u, v = edge x = self.find(parent, u) y = self.find(parent, v) if x != y: self.play(mGraph[(u, v)].animate.highlight(GREEN, 12)) mst_weight += wt self.union(parent, rank, x, y) else: self.play(mGraph[(u, v)].animate.highlight(RED, 12)) return mst_weight def construct(self): graph = { '0': [('1', 2), ('2', 4)], '1': [('0', 2), ('2', 1), ('3', 5), ('4', 5)], '2': [('0', 4), ('1', 1)], '3': [('1', 5), ('5', 2)], '4': [('1', 5)], '5': [('3', 2), ('6', 7), ('7', 2), ('8', 1)], '6': [('5', 7)], '7': [('5', 2), ('8', 6)], '8': [('5', 1), ('7', 6), ('9', 3)], '9': [('8', 3)] } nodes_and_positions = { '0': LEFT \* 6, '1': LEFT \* 4 + UP \* 2, '2': LEFT \* 4 + DOWN \* 2, '3': LEFT \* 2, '4': LEFT \* 2 + UP \* 2, '5': ORIGIN + RIGHT, '6': LEFT + DOWN \* 2, '7': RIGHT \* 3 + DOWN \* 2, '8': RIGHT \* 3 + UP \* 2, '9': RIGHT \* 5 + UP \* 2, } title = Text("Kruskal’s Algorithm for Minimum Spanning Tree", font="Cascadia Code").scale(0.7).to_edge(UP) self.play(Create(title)) total_weight = self.kruskal(graph, nodes_and_positions) text = Text("Total: " + str(total_weight), font="Cascadia Code").to_edge(DOWN) self.play(Create(text)) self.wait()