Spaces:
Runtime error
Runtime error
File size: 35,855 Bytes
1645305 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 |
"""
AI Agent for generating Manim animations from text prompts using pydantic-ai.
"""
import os
from typing import List, Optional
from dotenv import load_dotenv
import gradio as gr
from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.providers.openai import OpenAIProvider
from pydantic_ai import Agent, RunContext
from pydantic import BaseModel, Field
import openai
import tempfile
import subprocess
import logging
from datetime import datetime
import shutil
import time
from io import StringIO
import re
import json
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
llm = "deepseek-ai/DeepSeek-V3"
# Define Pydantic models for structured data
class AnimationPrompt(BaseModel):
"""User input for animation generation."""
description: str = Field(..., description="Text description of the mathematical or physics concept to animate")
complexity: str = Field("medium", description="Desired complexity of the animation")
class AnimationScenario(BaseModel):
"""Structured scenario for animation generation."""
title: str = Field(..., description="Title of the animation")
objects: List[str] = Field(..., description="Mathematical objects to include in the animation")
transformations: List[str] = Field(..., description="Transformations to apply to the objects")
equations: Optional[List[str]] = Field(None, description="Mathematical equations to visualize")
class AnimationResult(BaseModel):
"""Result of animation generation."""
code: str = Field(..., description="Generated Manim code")
video_path: str = Field(..., description="Path to the generated video file")
model = OpenAIModel(
'deepseek-ai/DeepSeek-V3',
provider=OpenAIProvider(
base_url='https://api.together.xyz/v1', api_key=os.environ.get('TOGETHER_API_KEY')
),
)
# Create the agent with a static system prompt
manim_agent = Agent(
model, # or use Together API as needed
deps_type=AnimationPrompt, # Use AnimationPrompt as dependency type
system_prompt=(
"You are a specialized AI agent for creating mathematical animations. "
"Your goal is to convert user descriptions into precise Manim code "
"that visualizes mathematical and physics concepts clearly and elegantly."
),
)
# Configure OpenAI client to use Together API
client = openai.OpenAI(
api_key=os.environ.get("TOGETHER_API_KEY"),
base_url="https://api.together.xyz/v1",
)
# Add dynamic system prompts
@manim_agent.system_prompt
def add_complexity_guidance(ctx: RunContext[AnimationPrompt]) -> str:
"""Add guidance based on requested complexity."""
complexity = ctx.deps.complexity
if complexity == "simple":
return (
"Create simple, easy-to-understand animations with minimal elements. "
"Focus on clarity over sophistication."
)
elif complexity == "complex":
return (
"Create sophisticated animations with multiple mathematical elements and transformations. "
"You can use advanced Manim features and complex mathematical concepts."
)
else: # medium
return (
"Balance clarity and sophistication in your animations. "
"Include enough detail to illustrate the concept clearly without overwhelming the viewer."
)
@manim_agent.system_prompt
def add_timestamp() -> str:
"""Add a timestamp to the system prompt."""
return f"Current date and time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
@manim_agent.tool
def extract_scenario(ctx: RunContext[AnimationPrompt]) -> AnimationScenario:
"""Extract a structured animation scenario from a text prompt."""
prompt = ctx.deps # Get the AnimationPrompt from context
# Use Together API with OpenAI client
response = client.chat.completions.create(
model=llm,
messages=[
{"role": "system", "content": """
Create a storyboard for a math/physics educational animation. Focus on making concepts clear for beginners.
Respond with a JSON object containing:
- title: A clear, engaging title
- objects: Mathematical objects to include (e.g., "coordinate_plane", "function_graph")
- transformations: Animation types to use (e.g., "fade_in", "transform")
- equations: Mathematical equations to feature (can be null)
- storyboard: 5-7 sections, each with:
* section_name: Section name (e.g., "Introduction")
* time_range: Timestamp range (e.g., "0:00-2:00")
* narration: What the narrator says
* visuals: What appears on screen
* animations: Specific animations
* key_points: 1-2 main takeaways
Include: introduction, simple explanation, detailed walkthrough, examples, and conclusion.
Use everyday analogies, define technical terms, and focus on visualization.
Only respond with the JSON object, nothing else.
"""},
{"role": "user", "content": f"Create an animation storyboard for: '{prompt.description}'. "
f"Complexity level: {prompt.complexity}. Make it beginner-friendly "
f"with clear explanations and visual examples."}
]
)
content = response.choices[0].message.content
try:
# Extract JSON from response
json_match = re.search(r'\{.*\}', content, re.DOTALL)
if json_match:
json_str = json_match.group(0)
scenario_dict = json.loads(json_str)
# Get basic scenario info
title = scenario_dict.get('title', f"{prompt.description.capitalize()} Visualization")
objects = scenario_dict.get('objects', [])
transformations = scenario_dict.get('transformations', [])
equations = scenario_dict.get('equations', None)
# Store the storyboard in logger
if 'storyboard' in scenario_dict:
logger.info(f"Generated storyboard: {json.dumps(scenario_dict['storyboard'], indent=2)}")
return AnimationScenario(
title=title,
objects=objects,
transformations=transformations,
equations=equations
)
except Exception as e:
logger.error(f"Error parsing scenario JSON: {e}")
# Fallback with default values
return AnimationScenario(
title=f"{prompt.description.capitalize()} Visualization",
objects=["circle", "text", "coordinate_system"],
transformations=["creation", "transformation", "highlight"],
equations=None
)
# Also simplify extract_scenario_direct with the same approach
def extract_scenario_direct(prompt: str, complexity: str = "medium") -> AnimationScenario:
"""Direct implementation of scenario extraction without using RunContext."""
# Use Together API with OpenAI client
response = client.chat.completions.create(
model=llm,
messages=[
{"role": "system", "content": """
Create a storyboard for a math/physics educational animation. Focus on making concepts clear for beginners.
Respond with a JSON object containing:
- title: A clear, engaging title
- objects: Mathematical objects to include (e.g., "coordinate_plane", "function_graph")
- transformations: Animation types to use (e.g., "fade_in", "transform")
- equations: Mathematical equations to feature (can be null)
- storyboard: 5-7 sections, each with:
* section_name: Section name (e.g., "Introduction")
* time_range: Timestamp range (e.g., "0:00-2:00")
* narration: What the narrator says
* visuals: What appears on screen
* animations: Specific animations
* key_points: 1-2 main takeaways
Include: introduction, simple explanation, detailed walkthrough, examples, and conclusion.
Use everyday analogies, define technical terms, and focus on visualization.
Only respond with the JSON object, nothing else.
"""},
{"role": "user", "content": f"Create an animation storyboard for: '{prompt}'. "
f"Complexity level: {complexity}. Make it beginner-friendly "
f"with clear explanations and visual examples."}
]
)
content = response.choices[0].message.content
try:
# Extract JSON from response
json_match = re.search(r'\{.*\}', content, re.DOTALL)
if json_match:
json_str = json_match.group(0)
scenario_dict = json.loads(json_str)
# Get basic scenario info
title = scenario_dict.get('title', f"{prompt.capitalize()} Visualization")
objects = scenario_dict.get('objects', [])
transformations = scenario_dict.get('transformations', [])
equations = scenario_dict.get('equations', None)
# Store the storyboard in logger
if 'storyboard' in scenario_dict:
logger.info(f"Generated storyboard: {json.dumps(scenario_dict['storyboard'], indent=2)}")
return AnimationScenario(
title=title,
objects=objects,
transformations=transformations,
equations=equations
)
except Exception as e:
logger.error(f"Error parsing scenario JSON: {e}")
# Fallback based on keywords in prompt
objects = ["circle", "text", "coordinate_system"]
transformations = ["creation", "transformation", "highlight"]
equations = None
if any(kw in prompt.lower() for kw in ["triangle", "pythagorean"]):
objects = ["triangle", "square", "text"]
transformations = ["creation", "area_calculation"]
equations = ["a^2 + b^2 = c^2"]
elif any(kw in prompt.lower() for kw in ["calculus", "derivative", "integral"]):
objects = ["function_graph", "tangent_line", "area"]
transformations = ["drawing", "zoom", "fill"]
equations = ["f'(x) = \\lim_{h \\to 0}\\frac{f(x+h) - f(x)}{h}"]
return AnimationScenario(
title=f"{prompt.capitalize()} Visualization",
objects=objects,
transformations=transformations,
equations=equations
)
@manim_agent.tool
def generate_code(ctx: RunContext[AnimationPrompt], scenario: AnimationScenario) -> str:
"""Generate Manim code from a structured scenario."""
# Use OpenAI to generate Manim code
objects_str = ", ".join(scenario.objects)
transformations_str = ", ".join(scenario.transformations)
equations_str = ", ".join(scenario.equations) if scenario.equations else "No equations"
prompt_description = ctx.deps.description # Access the original prompt
response = client.chat.completions.create(
model=llm,
messages=[
{"role": "system", "content": "Generate Manim code for mathematical animations."},
{"role": "user", "content": f"Create Manim code for an animation titled '{scenario.title}' "
f"with objects: {objects_str}, transformations: {transformations_str}, "
f"and equations: {equations_str}. Original request: '{prompt_description}'"}
]
)
return response.choices[0].message.content
@manim_agent.tool_plain
def render_animation(code: str, quality="medium_quality") -> str:
"""Render Manim code into a video. This doesn't need the context."""
return render_manim_video(code, quality)
def render_manim_video(code, quality="medium_quality"):
try:
temp_dir = tempfile.mkdtemp()
script_path = os.path.join(temp_dir, "manim_script.py")
with open(script_path, "w") as f:
f.write(code)
class_name = None
for line in code.split("\n"):
if line.startswith("class ") and "Scene" in line:
class_name = line.split("class ")[1].split("(")[0].strip()
break
if not class_name:
return "Error: Could not identify the Scene class in the generated code."
if quality == "high_quality":
command = ["manim", "-qh", script_path, class_name]
quality_dir = "1080p60"
elif quality == "low_quality":
command = ["manim", "-ql", script_path, class_name]
quality_dir = "480p15"
else:
command = ["manim", "-qm", script_path, class_name]
quality_dir = "720p30"
logger.info(f"Executing command: {' '.join(command)}")
result = subprocess.run(command, cwd=temp_dir, capture_output=True, text=True)
logger.info(f"Manim stdout: {result.stdout}")
logger.error(f"Manim stderr: {result.stderr}")
if result.returncode != 0:
logger.error(f"Manim execution failed: {result.stderr}")
return f"Error rendering video: {result.stderr}"
media_dir = os.path.join(temp_dir, "media")
videos_dir = os.path.join(media_dir, "videos")
if not os.path.exists(videos_dir):
return "Error: No video was generated. Check if Manim is installed correctly."
scene_dirs = [d for d in os.listdir(videos_dir) if os.path.isdir(os.path.join(videos_dir, d))]
if not scene_dirs:
return "Error: No scene directory found in the output."
scene_dir = max([os.path.join(videos_dir, d) for d in scene_dirs], key=os.path.getctime)
mp4_files = [f for f in os.listdir(os.path.join(scene_dir, quality_dir)) if f.endswith(".mp4")]
if not mp4_files:
return "Error: No MP4 file was generated."
video_file = max([os.path.join(scene_dir, quality_dir, f) for f in mp4_files], key=os.path.getctime)
output_dir = os.path.join(os.getcwd(), "generated_videos")
os.makedirs(output_dir, exist_ok=True)
timestamp = int(time.time())
output_file = os.path.join(output_dir, f"manim_video_{timestamp}.mp4")
shutil.copy2(video_file, output_file)
logger.info(f"Video generated: {output_file}")
return output_file
except Exception as e:
logger.error(f"Error rendering video: {e}")
return f"Error: {str(e)}"
finally:
try:
shutil.rmtree(temp_dir)
except Exception as e:
logger.error(f"Error cleaning up temporary directory: {e}")
def format_log_output(scenario: AnimationScenario, code: str) -> str:
"""Format scenario and code for display in UI."""
log_output = f"## Animation Scenario\n\n"
log_output += f"**Title:** {scenario.title}\n\n"
# Check if we have a storyboard in the logger
import json
import re
from io import StringIO
import logging
# Create a string buffer to capture log output
log_buffer = StringIO()
log_handler = logging.StreamHandler(log_buffer)
logger.addHandler(log_handler)
# Extract storyboard from logs if possible
storyboard = None
log_handler.flush()
logs = log_buffer.getvalue()
logger.removeHandler(log_handler)
json_match = re.search(r'Generated storyboard: (\[.*\])', logs)
if json_match:
try:
storyboard_str = json_match.group(1)
storyboard = json.loads(storyboard_str)
except:
storyboard = None
# If storyboard exists, display it
if storyboard:
log_output += f"## Animation Storyboard\n\n"
for i, section in enumerate(storyboard):
log_output += f"### {i+1}. {section.get('section_name', 'Section')}\n"
log_output += f"**Time:** {section.get('time_range', 'N/A')}\n\n"
log_output += f"**Narration:** {section.get('narration', '')}\n\n"
log_output += f"**Visuals:** {section.get('visuals', '')}\n\n"
log_output += f"**Animations:** {', '.join(section.get('animations', []))}\n\n"
if 'key_points' in section and section['key_points']:
log_output += f"**Key Points:**\n"
if isinstance(section['key_points'], list):
for point in section['key_points']:
log_output += f"- {point}\n"
else:
log_output += f"{section['key_points']}\n"
log_output += "---\n\n"
# Continue with regular output
log_output += f"**Mathematical Objects:**\n"
for obj in scenario.objects:
log_output += f"- {obj}\n"
log_output += f"\n**Transformations:**\n"
for transform in scenario.transformations:
log_output += f"- {transform}\n"
if scenario.equations:
log_output += f"\n**Equations:**\n"
for eq in scenario.equations:
log_output += f"- {eq}\n"
log_output += f"\n## Generated Manim Code\n\n```python\n{code}\n```"
return log_output
# Add a memory class to store conversation history
class ConversationMemory:
def __init__(self):
self.history = []
self.current_scenario = None
self.current_code = None
def add_interaction(self, prompt, scenario, code, video_path):
self.history.append({
"prompt": prompt,
"scenario": scenario,
"code": code,
"video_path": video_path,
"timestamp": datetime.now().isoformat()
})
self.current_scenario = scenario
self.current_code = code
def get_context_for_refinement(self):
if not self.history:
return ""
# Construct context from the last interaction
last = self.history[-1]
context = f"Previous prompt: {last['prompt']}\n"
if self.current_scenario and hasattr(self.current_scenario, 'title'):
context += f"Current animation title: {self.current_scenario.title}\n"
return context
# Initialize the memory
memory = ConversationMemory()
# Function to refine animation based on feedback
def refine_animation(code: str, feedback: str, quality: str = "medium_quality") -> tuple:
"""Refine animation based on user feedback."""
try:
# Get context from memory
context = memory.get_context_for_refinement()
# Use LLM to refine the code based on feedback
response = client.chat.completions.create(
model=llm,
messages=[
{"role": "system", "content": """
You are a Manim code expert. Your task is to refine animation code based on user feedback.
Keep the overall structure and purpose of the animation, but implement the changes requested.
Make sure the code remains valid and follows Manim best practices.
IMPORTANT REQUIREMENTS:
1. Only return the complete, corrected Manim code
2. Ensure class name and structure remains consistent
3. All changes must be compatible with Manim Community edition
4. Do not explain your changes in comments outside of helpful inline comments
"""},
{"role": "user", "content": f"Here is the current Manim animation code:\n\n```python\n{code}\n```\n\n{context}\nPlease refine this code based on this feedback: \"{feedback}\"\n\nReturn only the improved code."}
]
)
refined_code = response.choices[0].message.content.strip()
# Remove any markdown code formatting if present
if refined_code.startswith("```python"):
refined_code = refined_code.split("```python", 1)[1]
if refined_code.endswith("```"):
refined_code = refined_code.rsplit("```", 1)[0]
refined_code = refined_code.strip()
# Render the refined code
video_path = render_manim_video(refined_code, quality)
if video_path and not video_path.startswith("Error"):
# Update memory with refined code
if memory.current_scenario:
memory.current_code = refined_code
return refined_code, video_path, f"## Refined Animation\n\nFeedback incorporated: \"{feedback}\"\n\nAnimation successfully rendered."
else:
return refined_code, None, f"## Error in Rendering\n\n```\n{video_path}\n```\n\nPlease check your code for errors."
except Exception as e:
logger.error(f"Error refining animation: {e}")
return code, None, f"## Error in Refinement\n\n```\n{str(e)}\n```\n\nPlease try again with different feedback."
# Function to process user request
def generate_animation(prompt: str, complexity: str = "medium", quality: str = "medium_quality") -> tuple:
"""Generate an animation from a text prompt."""
try:
# Create prompt object with complexity
prompt_obj = AnimationPrompt(description=prompt, complexity=complexity)
# Run the agent in a way that it will use all necessary tools
result = manim_agent.run_sync(
f"Generate an animation from this description: {prompt}. "
f"First, extract the key elements of the scenario. Then, generate "
f"the Manim code for the animation. Finally, render the animation.",
deps=prompt_obj
)
# As a fallback, we'll use the direct methods
scenario = extract_scenario_direct(prompt, complexity)
# Fix: Use generate_code_direct instead of generate_code
# generate_code is an agent tool that requires a RunContext
code = generate_code_direct(prompt, scenario, complexity)
video_path = render_manim_video(code, quality) # Use the new render function
log_output = format_log_output(scenario, code)
# Store in memory
memory.add_interaction(prompt, scenario, code, video_path)
return code, video_path, log_output
except Exception as e:
logger.error(f"Error generating animation: {e}")
return f"Error: {str(e)}", None, f"Error occurred: {str(e)}"
# Add the missing generate_code_direct function if it doesn't exist
def generate_code_direct(prompt: str, scenario: AnimationScenario, complexity: str = "medium") -> str:
"""Direct implementation of code generation without using RunContext."""
# Use Together API with OpenAI client
objects_str = ", ".join(scenario.objects)
transformations_str = ", ".join(scenario.transformations)
equations_str = ", ".join(scenario.equations) if scenario.equations else "No equations"
# Try to get storyboard from logger if it exists
storyboard_info = ""
from io import StringIO
import re
import json
import logging
# Create a string buffer to capture log output
log_buffer = StringIO()
log_handler = logging.StreamHandler(log_buffer)
logger.addHandler(log_handler)
log_handler.flush()
logs = log_buffer.getvalue()
logger.removeHandler(log_handler)
# Extract storyboard from logs if possible
json_match = re.search(r'Generated storyboard: (\[.*\])', logs)
if json_match:
try:
storyboard_str = json_match.group(1)
storyboard = json.loads(storyboard_str)
storyboard_info = "Follow this narrative structure in your animation:\n"
for i, section in enumerate(storyboard):
storyboard_info += f"Section {i+1}: {section.get('section_name', 'Section')} - {section.get('time_range', 'N/A')}\n"
storyboard_info += f"Narration: {section.get('narration', '')}\n"
storyboard_info += f"Visuals: {section.get('visuals', '')}\n"
storyboard_info += f"Animations: {', '.join(section.get('animations', []))}\n\n"
except:
storyboard_info = ""
response = client.chat.completions.create(
model=llm,
messages=[
{"role": "system", "content": f"""
Create professional Manim animation code that explains mathematical concepts clearly and elegantly. Your code MUST:
TECHNICAL REQUIREMENTS:
1. Use 'from manim import *' at the top
2. Create a Scene class named 'ManimScene' that extends Scene
3. Implement the construct method correctly
4. Use only standard Manim Community edition objects and methods
5. Include proper self.play() and self.wait() calls with appropriate durations
6. Use valid LaTeX syntax for all mathematical expressions
7. Be fully compilable without errors
8. Include helpful comments explaining each section
9. Just return python code, do not include apostrophe in front and back of code
VISUAL STRUCTURE AND LAYOUT:
1. Structure the animation as a narrative with clear sections (introduction, explanation, conclusion)
2. Create title screens with engaging typography and animations
3. Position ALL elements with EXPLICIT coordinates using shift() or move_to() methods
4. Ensure AT LEAST 1.5 units of space between separate visual elements
5. For equations, use MathTex with proper scaling (scale(0.8) for complex equations)
6. Group related objects using VGroup and arrange them with arrange() method
7. When showing multiple equations, use arrange_in_grid() or arrange() with DOWN/RIGHT
8. For graphs, set explicit x_range and y_range with generous padding around functions
9. Scale ALL text elements appropriately (Title: 1.2, Headers: 1.0, Body: 0.8)
10. Use colors consistently and meaningfully (BLUE for emphasis, RED for important points)
11. Preventing overlaps of element, choose position for each element carefully, display element and text then move to next element
ANIMATION TECHNIQUES:
1. Use FadeIn for introductions of new elements
2. Apply TransformMatchingTex when evolving equations
3. Use Create for drawing geometric objects
4. Implement smooth transitions between different concepts with ReplacementTransform
5. Highlight important parts with Indicate or Circumscribe
6. Add pauses (self.wait()) after important points for comprehension
7. For complex animations, break them into smaller steps with appropriate timing
8. Use MoveAlongPath for demonstrating motion or change over time
9. Create emphasis with scale_about_point or succession of animations
10. Use camera movements sparingly and smoothly
EDUCATIONAL CLARITY:
1. Begin with simple concepts and build to more complex ones
2. Reveal information progressively, not all at once
3. Use visual metaphors to represent abstract concepts
4. Include clear labels for all important elements
5. When showing equations, animate their components step by step
6. Provide visual explanations alongside mathematical notation
7. Use consistent notation throughout the animation
8. Show practical applications or examples of the concept
9. Summarize key points at the end of the animation
{storyboard_info}
RESPOND WITH CLEAN, WELL-STRUCTURED CODE ONLY. DO NOT INCLUDE EXPLANATIONS OUTSIDE OF CODE COMMENTS.
"""
},
{"role": "user", "content": f"Create a comprehensive Manim animation for '{scenario.title}' that teaches this concept: '{prompt}'. \n\nUse these mathematical objects: {objects_str}. \nImplement these transformations/animations: {transformations_str}. \nFeature these equations: {equations_str}. \n\nComplexity level: {complexity}. \n\nEnsure all elements are properly spaced and positioned to prevent overlap. Structure the animation with a clear introduction, step-by-step explanation, and conclusion."}
]
)
return response.choices[0].message.content
# Function to re-render animation with edited code
def rerender_animation(edited_code: str, quality: str = "medium_quality") -> tuple:
"""Re-render animation with user-edited code."""
try:
video_path = render_manim_video(edited_code, quality)
if video_path and not video_path.startswith("Error"):
return video_path, f"## Re-rendered Animation\n\nCode successfully rendered to video.\n\nCheck the video player for results."
else:
return None, f"## Error in Rendering\n\n```\n{video_path}\n```\n\nPlease check your code for errors."
except Exception as e:
logger.error(f"Error re-rendering animation: {e}")
return None, f"## Error in Rendering\n\n```\n{str(e)}\n```\n\nPlease check your code for errors."
# Setup Gradio interface
def gradio_interface(prompt: str, complexity: str = "medium", quality: str = "medium_quality"):
code, video_path, log_output = generate_animation(prompt, complexity, quality)
if video_path and not video_path.startswith("Error"):
return code, video_path, log_output
else:
return code, None, log_output
# Replace the Gradio interface creation with a Blocks interface for better layout control
if __name__ == "__main__":
with gr.Blocks(title="Manimation Generator", theme=gr.themes.Base()) as demo:
gr.Markdown("# Manimation Generator")
gr.Markdown("Generate mathematical animations from text descriptions using AI")
# Add chat history component
chat_history = gr.Chatbot(label="Conversation History", height=300)
with gr.Row():
# Left column: User inputs
with gr.Column(scale=1):
# Replace single prompt with tabs for initial creation and feedback
with gr.Tabs():
with gr.TabItem("Create New Animation"):
new_prompt = gr.Textbox(
lines=5,
placeholder="Describe a mathematical concept to animate...",
label="Concept Description"
)
with gr.Row():
complexity = gr.Radio(
["simple", "medium", "complex"],
value="medium",
label="Complexity Level"
)
quality = gr.Radio(
["low_quality", "medium_quality", "high_quality"],
value="medium_quality",
label="Video Quality"
)
generate_btn = gr.Button("Generate Animation", variant="primary")
with gr.TabItem("Refine Animation"):
feedback = gr.Textbox(
lines=3,
placeholder="Provide feedback or suggestions for the current animation...",
label="Your Feedback"
)
refine_btn = gr.Button("Apply Feedback", variant="secondary")
# Code editor (common to both tabs)
code_output = gr.Code(
language="python",
label="Manim Code (Editable)",
lines=20,
interactive=True
)
# Add manual rerender button
rerender_btn = gr.Button("Re-render Current Code", variant="secondary")
# Right column: Video and details
with gr.Column(scale=1):
video_output = gr.Video(label="Animation")
# Uncomment the log_output component to fix the error
log_output = gr.Markdown(label="Details")
# Function to update chat history
def update_chat_history(history, user_message, bot_message, video_path):
history = history or []
history.append((user_message, None)) # User message
if video_path and not isinstance(video_path, str):
# If we have a valid video, include it in the message
bot_message = f"{bot_message}\n\n"
history.append((None, bot_message)) # Bot message
return history
# Function wrappers for UI updates with chat history
def generate_and_update_chat(prompt, complexity, quality, history):
code, video_path, log = generate_animation(prompt, complexity, quality)
new_history = update_chat_history(
history,
f"**Create animation:** {prompt}",
f"**Generated animation:** {memory.current_scenario.title if memory.current_scenario else 'Animation'}",
video_path
)
return code, video_path, log, new_history
def refine_and_update_chat(code, feedback_text, quality, history):
refined_code, video_path, log = refine_animation(code, feedback_text, quality)
new_history = update_chat_history(
history,
f"**Feedback:** {feedback_text}",
f"**Refined animation based on feedback**",
video_path
)
return refined_code, video_path, log, new_history
def rerender_and_update_chat(code, quality, history):
video_path, log = rerender_animation(code, quality)
new_history = update_chat_history(
history,
"**Re-rendered current code**",
"**Re-rendering complete**",
video_path
)
return video_path, log, new_history
# Connect the components to the function
generate_btn.click(
fn=generate_and_update_chat,
inputs=[new_prompt, complexity, quality, chat_history],
outputs=[code_output, video_output, log_output, chat_history]
)
refine_btn.click(
fn=refine_and_update_chat,
inputs=[code_output, feedback, quality, chat_history],
outputs=[code_output, video_output, log_output, chat_history]
)
rerender_btn.click(
fn=rerender_and_update_chat,
inputs=[code_output, quality, chat_history],
outputs=[video_output, log_output, chat_history]
)
# Add footer with social media links
with gr.Row(equal_height=True):
gr.Markdown("""
### Connect With Us
[<img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" width="30"/> GitHub](https://github.com/khanhthanhdev/Text2Video) |
[<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Facebook_Logo_%282019%29.png/600px-Facebook_Logo_%282019%29.png" width="30"/> Facebook](https://facebook.com/khanhthanhdev)
---
*Created with Manim and AI - Share your mathematical animations with the world!*
""")
demo.launch(server_name="0.0.0.0", server_port=7860)
|