Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import ( | |
| ClapAudioConfig, | |
| ClapConfig, | |
| ClapFeatureExtractor, | |
| ClapModel, | |
| ClapTextConfig, | |
| RobertaTokenizer, | |
| SpeechT5HifiGan, | |
| SpeechT5HifiGanConfig, | |
| ) | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| LMSDiscreteScheduler, | |
| MusicLDMPipeline, | |
| PNDMScheduler, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.utils import is_xformers_available | |
| from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device | |
| from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| class MusicLDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = MusicLDMPipeline | |
| params = TEXT_TO_AUDIO_PARAMS | |
| batch_params = TEXT_TO_AUDIO_BATCH_PARAMS | |
| required_optional_params = frozenset( | |
| [ | |
| "num_inference_steps", | |
| "num_waveforms_per_prompt", | |
| "generator", | |
| "latents", | |
| "output_type", | |
| "return_dict", | |
| "callback", | |
| "callback_steps", | |
| ] | |
| ) | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=(32, 64), | |
| class_embed_type="simple_projection", | |
| projection_class_embeddings_input_dim=32, | |
| class_embeddings_concat=True, | |
| ) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=1, | |
| out_channels=1, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| text_branch_config = ClapTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=16, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=2, | |
| num_hidden_layers=2, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| audio_branch_config = ClapAudioConfig( | |
| spec_size=64, | |
| window_size=4, | |
| num_mel_bins=64, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| depths=[2, 2], | |
| num_attention_heads=[2, 2], | |
| num_hidden_layers=2, | |
| hidden_size=192, | |
| patch_size=2, | |
| patch_stride=2, | |
| patch_embed_input_channels=4, | |
| ) | |
| text_encoder_config = ClapConfig.from_text_audio_configs( | |
| text_config=text_branch_config, audio_config=audio_branch_config, projection_dim=32 | |
| ) | |
| text_encoder = ClapModel(text_encoder_config) | |
| tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77) | |
| feature_extractor = ClapFeatureExtractor.from_pretrained( | |
| "hf-internal-testing/tiny-random-ClapModel", hop_length=7900 | |
| ) | |
| torch.manual_seed(0) | |
| vocoder_config = SpeechT5HifiGanConfig( | |
| model_in_dim=8, | |
| sampling_rate=16000, | |
| upsample_initial_channel=16, | |
| upsample_rates=[2, 2], | |
| upsample_kernel_sizes=[4, 4], | |
| resblock_kernel_sizes=[3, 7], | |
| resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], | |
| normalize_before=False, | |
| ) | |
| vocoder = SpeechT5HifiGan(vocoder_config) | |
| components = { | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "feature_extractor": feature_extractor, | |
| "vocoder": vocoder, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "A hammer hitting a wooden surface", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| } | |
| return inputs | |
| def test_musicldm_ddim(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| musicldm_pipe = MusicLDMPipeline(**components) | |
| musicldm_pipe = musicldm_pipe.to(torch_device) | |
| musicldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| output = musicldm_pipe(**inputs) | |
| audio = output.audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) == 256 | |
| audio_slice = audio[:10] | |
| expected_slice = np.array( | |
| [-0.0027, -0.0036, -0.0037, -0.0020, -0.0035, -0.0019, -0.0037, -0.0020, -0.0038, -0.0019] | |
| ) | |
| assert np.abs(audio_slice - expected_slice).max() < 1e-4 | |
| def test_musicldm_prompt_embeds(self): | |
| components = self.get_dummy_components() | |
| musicldm_pipe = MusicLDMPipeline(**components) | |
| musicldm_pipe = musicldm_pipe.to(torch_device) | |
| musicldm_pipe = musicldm_pipe.to(torch_device) | |
| musicldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["prompt"] = 3 * [inputs["prompt"]] | |
| # forward | |
| output = musicldm_pipe(**inputs) | |
| audio_1 = output.audios[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| prompt = 3 * [inputs.pop("prompt")] | |
| text_inputs = musicldm_pipe.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=musicldm_pipe.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_inputs = text_inputs["input_ids"].to(torch_device) | |
| prompt_embeds = musicldm_pipe.text_encoder.get_text_features(text_inputs) | |
| inputs["prompt_embeds"] = prompt_embeds | |
| # forward | |
| output = musicldm_pipe(**inputs) | |
| audio_2 = output.audios[0] | |
| assert np.abs(audio_1 - audio_2).max() < 1e-2 | |
| def test_musicldm_negative_prompt_embeds(self): | |
| components = self.get_dummy_components() | |
| musicldm_pipe = MusicLDMPipeline(**components) | |
| musicldm_pipe = musicldm_pipe.to(torch_device) | |
| musicldm_pipe = musicldm_pipe.to(torch_device) | |
| musicldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| negative_prompt = 3 * ["this is a negative prompt"] | |
| inputs["negative_prompt"] = negative_prompt | |
| inputs["prompt"] = 3 * [inputs["prompt"]] | |
| # forward | |
| output = musicldm_pipe(**inputs) | |
| audio_1 = output.audios[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| prompt = 3 * [inputs.pop("prompt")] | |
| embeds = [] | |
| for p in [prompt, negative_prompt]: | |
| text_inputs = musicldm_pipe.tokenizer( | |
| p, | |
| padding="max_length", | |
| max_length=musicldm_pipe.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_inputs = text_inputs["input_ids"].to(torch_device) | |
| text_embeds = musicldm_pipe.text_encoder.get_text_features( | |
| text_inputs, | |
| ) | |
| embeds.append(text_embeds) | |
| inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds | |
| # forward | |
| output = musicldm_pipe(**inputs) | |
| audio_2 = output.audios[0] | |
| assert np.abs(audio_1 - audio_2).max() < 1e-2 | |
| def test_musicldm_negative_prompt(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| components["scheduler"] = PNDMScheduler(skip_prk_steps=True) | |
| musicldm_pipe = MusicLDMPipeline(**components) | |
| musicldm_pipe = musicldm_pipe.to(device) | |
| musicldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| negative_prompt = "egg cracking" | |
| output = musicldm_pipe(**inputs, negative_prompt=negative_prompt) | |
| audio = output.audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) == 256 | |
| audio_slice = audio[:10] | |
| expected_slice = np.array( | |
| [-0.0027, -0.0036, -0.0037, -0.0019, -0.0035, -0.0018, -0.0037, -0.0021, -0.0038, -0.0018] | |
| ) | |
| assert np.abs(audio_slice - expected_slice).max() < 1e-4 | |
| def test_musicldm_num_waveforms_per_prompt(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| components["scheduler"] = PNDMScheduler(skip_prk_steps=True) | |
| musicldm_pipe = MusicLDMPipeline(**components) | |
| musicldm_pipe = musicldm_pipe.to(device) | |
| musicldm_pipe.set_progress_bar_config(disable=None) | |
| prompt = "A hammer hitting a wooden surface" | |
| # test num_waveforms_per_prompt=1 (default) | |
| audios = musicldm_pipe(prompt, num_inference_steps=2).audios | |
| assert audios.shape == (1, 256) | |
| # test num_waveforms_per_prompt=1 (default) for batch of prompts | |
| batch_size = 2 | |
| audios = musicldm_pipe([prompt] * batch_size, num_inference_steps=2).audios | |
| assert audios.shape == (batch_size, 256) | |
| # test num_waveforms_per_prompt for single prompt | |
| num_waveforms_per_prompt = 2 | |
| audios = musicldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios | |
| assert audios.shape == (num_waveforms_per_prompt, 256) | |
| # test num_waveforms_per_prompt for batch of prompts | |
| batch_size = 2 | |
| audios = musicldm_pipe( | |
| [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt | |
| ).audios | |
| assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) | |
| def test_musicldm_audio_length_in_s(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| musicldm_pipe = MusicLDMPipeline(**components) | |
| musicldm_pipe = musicldm_pipe.to(torch_device) | |
| musicldm_pipe.set_progress_bar_config(disable=None) | |
| vocoder_sampling_rate = musicldm_pipe.vocoder.config.sampling_rate | |
| inputs = self.get_dummy_inputs(device) | |
| output = musicldm_pipe(audio_length_in_s=0.016, **inputs) | |
| audio = output.audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) / vocoder_sampling_rate == 0.016 | |
| output = musicldm_pipe(audio_length_in_s=0.032, **inputs) | |
| audio = output.audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) / vocoder_sampling_rate == 0.032 | |
| def test_musicldm_vocoder_model_in_dim(self): | |
| components = self.get_dummy_components() | |
| musicldm_pipe = MusicLDMPipeline(**components) | |
| musicldm_pipe = musicldm_pipe.to(torch_device) | |
| musicldm_pipe.set_progress_bar_config(disable=None) | |
| prompt = ["hey"] | |
| output = musicldm_pipe(prompt, num_inference_steps=1) | |
| audio_shape = output.audios.shape | |
| assert audio_shape == (1, 256) | |
| config = musicldm_pipe.vocoder.config | |
| config.model_in_dim *= 2 | |
| musicldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device) | |
| output = musicldm_pipe(prompt, num_inference_steps=1) | |
| audio_shape = output.audios.shape | |
| # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram | |
| assert audio_shape == (1, 256) | |
| def test_attention_slicing_forward_pass(self): | |
| self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical() | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False) | |
| def test_to_dtype(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| # The method component.dtype returns the dtype of the first parameter registered in the model, not the | |
| # dtype of the entire model. In the case of CLAP, the first parameter is a float64 constant (logit scale) | |
| model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")} | |
| # Without the logit scale parameters, everything is float32 | |
| model_dtypes.pop("text_encoder") | |
| self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values())) | |
| # the CLAP sub-models are float32 | |
| model_dtypes["clap_text_branch"] = components["text_encoder"].text_model.dtype | |
| self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values())) | |
| # Once we send to fp16, all params are in half-precision, including the logit scale | |
| pipe.to(dtype=torch.float16) | |
| model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")} | |
| self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes.values())) | |
| class MusicLDMPipelineNightlyTests(unittest.TestCase): | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
| generator = torch.Generator(device=generator_device).manual_seed(seed) | |
| latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16)) | |
| latents = torch.from_numpy(latents).to(device=device, dtype=dtype) | |
| inputs = { | |
| "prompt": "A hammer hitting a wooden surface", | |
| "latents": latents, | |
| "generator": generator, | |
| "num_inference_steps": 3, | |
| "guidance_scale": 2.5, | |
| } | |
| return inputs | |
| def test_musicldm(self): | |
| musicldm_pipe = MusicLDMPipeline.from_pretrained("cvssp/musicldm") | |
| musicldm_pipe = musicldm_pipe.to(torch_device) | |
| musicldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs(torch_device) | |
| inputs["num_inference_steps"] = 25 | |
| audio = musicldm_pipe(**inputs).audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) == 81952 | |
| # check the portion of the generated audio with the largest dynamic range (reduces flakiness) | |
| audio_slice = audio[8680:8690] | |
| expected_slice = np.array( | |
| [-0.1042, -0.1068, -0.1235, -0.1387, -0.1428, -0.136, -0.1213, -0.1097, -0.0967, -0.0945] | |
| ) | |
| max_diff = np.abs(expected_slice - audio_slice).max() | |
| assert max_diff < 1e-3 | |
| def test_musicldm_lms(self): | |
| musicldm_pipe = MusicLDMPipeline.from_pretrained("cvssp/musicldm") | |
| musicldm_pipe.scheduler = LMSDiscreteScheduler.from_config(musicldm_pipe.scheduler.config) | |
| musicldm_pipe = musicldm_pipe.to(torch_device) | |
| musicldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs(torch_device) | |
| audio = musicldm_pipe(**inputs).audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) == 81952 | |
| # check the portion of the generated audio with the largest dynamic range (reduces flakiness) | |
| audio_slice = audio[58020:58030] | |
| expected_slice = np.array([0.3592, 0.3477, 0.4084, 0.4665, 0.5048, 0.5891, 0.6461, 0.5579, 0.4595, 0.4403]) | |
| max_diff = np.abs(expected_slice - audio_slice).max() | |
| assert max_diff < 1e-3 | |