Spaces:
Runtime error
Runtime error
| # Copyright 2024 The HuggingFace Team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from transformers import AutoTokenizer, T5EncoderModel | |
| from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXVideoToVideoPipeline, DDIMScheduler | |
| from diffusers.utils.testing_utils import enable_full_determinism, torch_device | |
| from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
| from ..test_pipelines_common import ( | |
| PipelineTesterMixin, | |
| check_qkv_fusion_matches_attn_procs_length, | |
| check_qkv_fusion_processors_exist, | |
| to_np, | |
| ) | |
| enable_full_determinism() | |
| class CogVideoXVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = CogVideoXVideoToVideoPipeline | |
| params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS.union({"video"}) | |
| image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| required_optional_params = frozenset( | |
| [ | |
| "num_inference_steps", | |
| "generator", | |
| "latents", | |
| "return_dict", | |
| "callback_on_step_end", | |
| "callback_on_step_end_tensor_inputs", | |
| ] | |
| ) | |
| test_xformers_attention = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = CogVideoXTransformer3DModel( | |
| # Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings | |
| # But, since we are using tiny-random-t5 here, we need the internal dim of CogVideoXTransformer3DModel | |
| # to be 32. The internal dim is product of num_attention_heads and attention_head_dim | |
| num_attention_heads=4, | |
| attention_head_dim=8, | |
| in_channels=4, | |
| out_channels=4, | |
| time_embed_dim=2, | |
| text_embed_dim=32, # Must match with tiny-random-t5 | |
| num_layers=1, | |
| sample_width=2, # latent width: 2 -> final width: 16 | |
| sample_height=2, # latent height: 2 -> final height: 16 | |
| sample_frames=9, # latent frames: (9 - 1) / 4 + 1 = 3 -> final frames: 9 | |
| patch_size=2, | |
| temporal_compression_ratio=4, | |
| max_text_seq_length=16, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKLCogVideoX( | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=( | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDownBlock3D", | |
| ), | |
| up_block_types=( | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXUpBlock3D", | |
| ), | |
| block_out_channels=(8, 8, 8, 8), | |
| latent_channels=4, | |
| layers_per_block=1, | |
| norm_num_groups=2, | |
| temporal_compression_ratio=4, | |
| ) | |
| torch.manual_seed(0) | |
| scheduler = DDIMScheduler() | |
| text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| components = { | |
| "transformer": transformer, | |
| "vae": vae, | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed: int = 0, num_frames: int = 8): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| video_height = 16 | |
| video_width = 16 | |
| video = [Image.new("RGB", (video_width, video_height))] * num_frames | |
| inputs = { | |
| "video": video, | |
| "prompt": "dance monkey", | |
| "negative_prompt": "", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "strength": 0.5, | |
| "guidance_scale": 6.0, | |
| # Cannot reduce because convolution kernel becomes bigger than sample | |
| "height": video_height, | |
| "width": video_width, | |
| "max_sequence_length": 16, | |
| "output_type": "pt", | |
| } | |
| return inputs | |
| def test_inference(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| video = pipe(**inputs).frames | |
| generated_video = video[0] | |
| self.assertEqual(generated_video.shape, (8, 3, 16, 16)) | |
| expected_video = torch.randn(8, 3, 16, 16) | |
| max_diff = np.abs(generated_video - expected_video).max() | |
| self.assertLessEqual(max_diff, 1e10) | |
| def test_callback_inputs(self): | |
| sig = inspect.signature(self.pipeline_class.__call__) | |
| has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters | |
| has_callback_step_end = "callback_on_step_end" in sig.parameters | |
| if not (has_callback_tensor_inputs and has_callback_step_end): | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| self.assertTrue( | |
| hasattr(pipe, "_callback_tensor_inputs"), | |
| f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", | |
| ) | |
| def callback_inputs_subset(pipe, i, t, callback_kwargs): | |
| # iterate over callback args | |
| for tensor_name, tensor_value in callback_kwargs.items(): | |
| # check that we're only passing in allowed tensor inputs | |
| assert tensor_name in pipe._callback_tensor_inputs | |
| return callback_kwargs | |
| def callback_inputs_all(pipe, i, t, callback_kwargs): | |
| for tensor_name in pipe._callback_tensor_inputs: | |
| assert tensor_name in callback_kwargs | |
| # iterate over callback args | |
| for tensor_name, tensor_value in callback_kwargs.items(): | |
| # check that we're only passing in allowed tensor inputs | |
| assert tensor_name in pipe._callback_tensor_inputs | |
| return callback_kwargs | |
| inputs = self.get_dummy_inputs(torch_device) | |
| # Test passing in a subset | |
| inputs["callback_on_step_end"] = callback_inputs_subset | |
| inputs["callback_on_step_end_tensor_inputs"] = ["latents"] | |
| output = pipe(**inputs)[0] | |
| # Test passing in a everything | |
| inputs["callback_on_step_end"] = callback_inputs_all | |
| inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
| output = pipe(**inputs)[0] | |
| def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): | |
| is_last = i == (pipe.num_timesteps - 1) | |
| if is_last: | |
| callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) | |
| return callback_kwargs | |
| inputs["callback_on_step_end"] = callback_inputs_change_tensor | |
| inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
| output = pipe(**inputs)[0] | |
| assert output.abs().sum() < 1e10 | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3) | |
| def test_attention_slicing_forward_pass( | |
| self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
| ): | |
| if not self.test_attention_slicing: | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator_device = "cpu" | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_without_slicing = pipe(**inputs)[0] | |
| pipe.enable_attention_slicing(slice_size=1) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_with_slicing1 = pipe(**inputs)[0] | |
| pipe.enable_attention_slicing(slice_size=2) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_with_slicing2 = pipe(**inputs)[0] | |
| if test_max_difference: | |
| max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() | |
| max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() | |
| self.assertLess( | |
| max(max_diff1, max_diff2), | |
| expected_max_diff, | |
| "Attention slicing should not affect the inference results", | |
| ) | |
| def test_vae_tiling(self, expected_diff_max: float = 0.2): | |
| # Since VideoToVideo uses both encoder and decoder tiling, there seems to be much more numerical | |
| # difference. We seem to need a higher tolerance here... | |
| # TODO(aryan): Look into this more deeply | |
| expected_diff_max = 0.4 | |
| generator_device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to("cpu") | |
| pipe.set_progress_bar_config(disable=None) | |
| # Without tiling | |
| inputs = self.get_dummy_inputs(generator_device) | |
| inputs["height"] = inputs["width"] = 128 | |
| output_without_tiling = pipe(**inputs)[0] | |
| # With tiling | |
| pipe.vae.enable_tiling( | |
| tile_sample_min_height=96, | |
| tile_sample_min_width=96, | |
| tile_overlap_factor_height=1 / 12, | |
| tile_overlap_factor_width=1 / 12, | |
| ) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| inputs["height"] = inputs["width"] = 128 | |
| output_with_tiling = pipe(**inputs)[0] | |
| self.assertLess( | |
| (to_np(output_without_tiling) - to_np(output_with_tiling)).max(), | |
| expected_diff_max, | |
| "VAE tiling should not affect the inference results", | |
| ) | |
| def test_fused_qkv_projections(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| frames = pipe(**inputs).frames # [B, F, C, H, W] | |
| original_image_slice = frames[0, -2:, -1, -3:, -3:] | |
| pipe.fuse_qkv_projections() | |
| assert check_qkv_fusion_processors_exist( | |
| pipe.transformer | |
| ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." | |
| assert check_qkv_fusion_matches_attn_procs_length( | |
| pipe.transformer, pipe.transformer.original_attn_processors | |
| ), "Something wrong with the attention processors concerning the fused QKV projections." | |
| inputs = self.get_dummy_inputs(device) | |
| frames = pipe(**inputs).frames | |
| image_slice_fused = frames[0, -2:, -1, -3:, -3:] | |
| pipe.transformer.unfuse_qkv_projections() | |
| inputs = self.get_dummy_inputs(device) | |
| frames = pipe(**inputs).frames | |
| image_slice_disabled = frames[0, -2:, -1, -3:, -3:] | |
| assert np.allclose( | |
| original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 | |
| ), "Fusion of QKV projections shouldn't affect the outputs." | |
| assert np.allclose( | |
| image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 | |
| ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." | |
| assert np.allclose( | |
| original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 | |
| ), "Original outputs should match when fused QKV projections are disabled." | |