Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2025 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import logging | |
| import os | |
| import shutil | |
| import sys | |
| import tempfile | |
| from diffusers import DiffusionPipeline, UNet2DConditionModel # noqa: E402 | |
| sys.path.append("..") | |
| from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | |
| logging.basicConfig(level=logging.DEBUG) | |
| logger = logging.getLogger() | |
| stream_handler = logging.StreamHandler(sys.stdout) | |
| logger.addHandler(stream_handler) | |
| class TextToImage(ExamplesTestsAccelerate): | |
| def test_text_to_image(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| # save_pretrained smoke test | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |
| def test_text_to_image_checkpointing(self): | |
| pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
| prompt = "a prompt" | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| # Run training script with checkpointing | |
| # max_train_steps == 4, checkpointing_steps == 2 | |
| # Should create checkpoints at steps 2, 4 | |
| initial_run_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 4 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + initial_run_args) | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(prompt, num_inference_steps=1) | |
| # check checkpoint directories exist | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-2", "checkpoint-4"}, | |
| ) | |
| # check can run an intermediate checkpoint | |
| unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") | |
| pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) | |
| pipe(prompt, num_inference_steps=1) | |
| # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
| shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
| # Run training script for 2 total steps resuming from checkpoint 4 | |
| resume_run_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=1 | |
| --resume_from_checkpoint=checkpoint-4 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| # check can run new fully trained pipeline | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(prompt, num_inference_steps=1) | |
| # no checkpoint-2 -> check old checkpoints do not exist | |
| # check new checkpoints exist | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-4", "checkpoint-5"}, | |
| ) | |
| def test_text_to_image_checkpointing_use_ema(self): | |
| pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
| prompt = "a prompt" | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| # Run training script with checkpointing | |
| # max_train_steps == 4, checkpointing_steps == 2 | |
| # Should create checkpoints at steps 2, 4 | |
| initial_run_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 4 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --use_ema | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + initial_run_args) | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(prompt, num_inference_steps=2) | |
| # check checkpoint directories exist | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-2", "checkpoint-4"}, | |
| ) | |
| # check can run an intermediate checkpoint | |
| unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") | |
| pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) | |
| pipe(prompt, num_inference_steps=1) | |
| # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
| shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
| # Run training script for 2 total steps resuming from checkpoint 4 | |
| resume_run_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=1 | |
| --resume_from_checkpoint=checkpoint-4 | |
| --use_ema | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| # check can run new fully trained pipeline | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(prompt, num_inference_steps=1) | |
| # no checkpoint-2 -> check old checkpoints do not exist | |
| # check new checkpoints exist | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-4", "checkpoint-5"}, | |
| ) | |
| def test_text_to_image_checkpointing_checkpoints_total_limit(self): | |
| pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
| prompt = "a prompt" | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| # Run training script with checkpointing | |
| # max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2 | |
| # Should create checkpoints at steps 2, 4, 6 | |
| # with checkpoint at step 2 deleted | |
| initial_run_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 6 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --checkpoints_total_limit=2 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + initial_run_args) | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(prompt, num_inference_steps=1) | |
| # check checkpoint directories exist | |
| # checkpoint-2 should have been deleted | |
| self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}) | |
| def test_text_to_image_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
| pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
| prompt = "a prompt" | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| # Run training script with checkpointing | |
| # max_train_steps == 4, checkpointing_steps == 2 | |
| # Should create checkpoints at steps 2, 4 | |
| initial_run_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 4 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + initial_run_args) | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(prompt, num_inference_steps=1) | |
| # check checkpoint directories exist | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-2", "checkpoint-4"}, | |
| ) | |
| # resume and we should try to checkpoint at 6, where we'll have to remove | |
| # checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint | |
| resume_run_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 8 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --resume_from_checkpoint=checkpoint-4 | |
| --checkpoints_total_limit=2 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(prompt, num_inference_steps=1) | |
| # check checkpoint directories exist | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-6", "checkpoint-8"}, | |
| ) | |
| class TextToImageSDXL(ExamplesTestsAccelerate): | |
| def test_text_to_image_sdxl(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| examples/text_to_image/train_text_to_image_sdxl.py | |
| --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| # save_pretrained smoke test | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |