Spaces:
Runtime error
Runtime error
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import sys | |
| import unittest | |
| import numpy as np | |
| import pytest | |
| import torch | |
| from transformers import CLIPTextModel, CLIPTokenizer, LlamaModel, LlamaTokenizerFast | |
| from diffusers import ( | |
| AutoencoderKLHunyuanVideo, | |
| FlowMatchEulerDiscreteScheduler, | |
| HunyuanVideoPipeline, | |
| HunyuanVideoTransformer3DModel, | |
| ) | |
| from diffusers.utils.testing_utils import ( | |
| floats_tensor, | |
| nightly, | |
| numpy_cosine_similarity_distance, | |
| require_big_gpu_with_torch_cuda, | |
| require_peft_backend, | |
| require_torch_gpu, | |
| skip_mps, | |
| ) | |
| sys.path.append(".") | |
| from utils import PeftLoraLoaderMixinTests # noqa: E402 | |
| class HunyuanVideoLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): | |
| pipeline_class = HunyuanVideoPipeline | |
| scheduler_cls = FlowMatchEulerDiscreteScheduler | |
| scheduler_classes = [FlowMatchEulerDiscreteScheduler] | |
| scheduler_kwargs = {} | |
| transformer_kwargs = { | |
| "in_channels": 4, | |
| "out_channels": 4, | |
| "num_attention_heads": 2, | |
| "attention_head_dim": 10, | |
| "num_layers": 1, | |
| "num_single_layers": 1, | |
| "num_refiner_layers": 1, | |
| "patch_size": 1, | |
| "patch_size_t": 1, | |
| "guidance_embeds": True, | |
| "text_embed_dim": 16, | |
| "pooled_projection_dim": 8, | |
| "rope_axes_dim": (2, 4, 4), | |
| } | |
| transformer_cls = HunyuanVideoTransformer3DModel | |
| vae_kwargs = { | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "latent_channels": 4, | |
| "down_block_types": ( | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| ), | |
| "up_block_types": ( | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| ), | |
| "block_out_channels": (8, 8, 8, 8), | |
| "layers_per_block": 1, | |
| "act_fn": "silu", | |
| "norm_num_groups": 4, | |
| "scaling_factor": 0.476986, | |
| "spatial_compression_ratio": 8, | |
| "temporal_compression_ratio": 4, | |
| "mid_block_add_attention": True, | |
| } | |
| vae_cls = AutoencoderKLHunyuanVideo | |
| has_two_text_encoders = True | |
| tokenizer_cls, tokenizer_id, tokenizer_subfolder = ( | |
| LlamaTokenizerFast, | |
| "hf-internal-testing/tiny-random-hunyuanvideo", | |
| "tokenizer", | |
| ) | |
| tokenizer_2_cls, tokenizer_2_id, tokenizer_2_subfolder = ( | |
| CLIPTokenizer, | |
| "hf-internal-testing/tiny-random-hunyuanvideo", | |
| "tokenizer_2", | |
| ) | |
| text_encoder_cls, text_encoder_id, text_encoder_subfolder = ( | |
| LlamaModel, | |
| "hf-internal-testing/tiny-random-hunyuanvideo", | |
| "text_encoder", | |
| ) | |
| text_encoder_2_cls, text_encoder_2_id, text_encoder_2_subfolder = ( | |
| CLIPTextModel, | |
| "hf-internal-testing/tiny-random-hunyuanvideo", | |
| "text_encoder_2", | |
| ) | |
| def output_shape(self): | |
| return (1, 9, 32, 32, 3) | |
| def get_dummy_inputs(self, with_generator=True): | |
| batch_size = 1 | |
| sequence_length = 16 | |
| num_channels = 4 | |
| num_frames = 9 | |
| num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1 | |
| sizes = (4, 4) | |
| generator = torch.manual_seed(0) | |
| noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes) | |
| input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) | |
| pipeline_inputs = { | |
| "prompt": "", | |
| "num_frames": num_frames, | |
| "num_inference_steps": 1, | |
| "guidance_scale": 6.0, | |
| "height": 32, | |
| "width": 32, | |
| "max_sequence_length": sequence_length, | |
| "prompt_template": {"template": "{}", "crop_start": 0}, | |
| "output_type": "np", | |
| } | |
| if with_generator: | |
| pipeline_inputs.update({"generator": generator}) | |
| return noise, input_ids, pipeline_inputs | |
| def test_simple_inference_with_text_lora_denoiser_fused_multi(self): | |
| super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3) | |
| def test_simple_inference_with_text_denoiser_lora_unfused(self): | |
| super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3) | |
| # TODO(aryan): Fix the following test | |
| def test_simple_inference_save_pretrained(self): | |
| pass | |
| def test_simple_inference_with_text_denoiser_block_scale(self): | |
| pass | |
| def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): | |
| pass | |
| def test_modify_padding_mode(self): | |
| pass | |
| def test_simple_inference_with_partial_text_lora(self): | |
| pass | |
| def test_simple_inference_with_text_lora(self): | |
| pass | |
| def test_simple_inference_with_text_lora_and_scale(self): | |
| pass | |
| def test_simple_inference_with_text_lora_fused(self): | |
| pass | |
| def test_simple_inference_with_text_lora_save_load(self): | |
| pass | |
| class HunyuanVideoLoRAIntegrationTests(unittest.TestCase): | |
| """internal note: The integration slices were obtained on DGX. | |
| torch: 2.5.1+cu124 with CUDA 12.5. Need the same setup for the | |
| assertions to pass. | |
| """ | |
| num_inference_steps = 10 | |
| seed = 0 | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| model_id = "hunyuanvideo-community/HunyuanVideo" | |
| transformer = HunyuanVideoTransformer3DModel.from_pretrained( | |
| model_id, subfolder="transformer", torch_dtype=torch.bfloat16 | |
| ) | |
| self.pipeline = HunyuanVideoPipeline.from_pretrained( | |
| model_id, transformer=transformer, torch_dtype=torch.float16 | |
| ).to("cuda") | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_original_format_cseti(self): | |
| self.pipeline.load_lora_weights( | |
| "Cseti/HunyuanVideo-LoRA-Arcane_Jinx-v1", weight_name="csetiarcane-nfjinx-v1-6000.safetensors" | |
| ) | |
| self.pipeline.fuse_lora() | |
| self.pipeline.unload_lora_weights() | |
| self.pipeline.vae.enable_tiling() | |
| prompt = "CSETIARCANE. A cat walks on the grass, realistic" | |
| out = self.pipeline( | |
| prompt=prompt, | |
| height=320, | |
| width=512, | |
| num_frames=9, | |
| num_inference_steps=self.num_inference_steps, | |
| output_type="np", | |
| generator=torch.manual_seed(self.seed), | |
| ).frames[0] | |
| out = out.flatten() | |
| out_slice = np.concatenate((out[:8], out[-8:])) | |
| # fmt: off | |
| expected_slice = np.array([0.1013, 0.1924, 0.0078, 0.1021, 0.1929, 0.0078, 0.1023, 0.1919, 0.7402, 0.104, 0.4482, 0.7354, 0.0925, 0.4382, 0.7275, 0.0815]) | |
| # fmt: on | |
| max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
| assert max_diff < 1e-3 | |