Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,55 +7,52 @@ import random
|
|
| 7 |
import spaces
|
| 8 |
import gradio as gr
|
| 9 |
import numpy as np
|
|
|
|
| 10 |
from PIL import Image, ImageCms
|
| 11 |
import torch
|
| 12 |
from diffusers import FluxTransformer2DModel
|
| 13 |
from diffusers.utils import load_image
|
| 14 |
from pipeline_flux_control_removal import FluxControlRemovalPipeline
|
| 15 |
-
|
| 16 |
-
# 初始化模型部分
|
| 17 |
pipe = None
|
| 18 |
torch.set_grad_enabled(False)
|
| 19 |
-
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
]
|
| 50 |
|
| 51 |
-
]
|
| 52 |
|
| 53 |
-
# 模型加载代码(保持不变)
|
| 54 |
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
| 55 |
lora_path = 'theSure/Omnieraser'
|
| 56 |
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
|
| 57 |
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
|
| 58 |
-
|
| 59 |
with torch.no_grad():
|
| 60 |
initial_input_channels = transformer.config.in_channels
|
| 61 |
new_linear = torch.nn.Linear(
|
|
@@ -71,7 +68,6 @@ with torch.no_grad():
|
|
| 71 |
new_linear.bias.copy_(transformer.x_embedder.bias)
|
| 72 |
transformer.x_embedder = new_linear
|
| 73 |
transformer.register_to_config(in_channels=initial_input_channels*4)
|
| 74 |
-
|
| 75 |
pipe = FluxControlRemovalPipeline.from_pretrained(
|
| 76 |
base_model_path,
|
| 77 |
transformer=transformer,
|
|
@@ -83,7 +79,6 @@ gr.Info(str(f"Inject LoRA: {lora_path}"))
|
|
| 83 |
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
|
| 84 |
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
|
| 85 |
|
| 86 |
-
# 辅助函数
|
| 87 |
@spaces.GPU
|
| 88 |
def set_seed(seed):
|
| 89 |
torch.manual_seed(seed)
|
|
@@ -92,7 +87,6 @@ def set_seed(seed):
|
|
| 92 |
np.random.seed(seed)
|
| 93 |
random.seed(seed)
|
| 94 |
|
| 95 |
-
# 主要处理函数
|
| 96 |
@spaces.GPU
|
| 97 |
def predict(
|
| 98 |
input_image,
|
|
@@ -100,14 +94,16 @@ def predict(
|
|
| 100 |
ddim_steps,
|
| 101 |
seed,
|
| 102 |
scale,
|
| 103 |
-
|
| 104 |
-
|
|
|
|
| 105 |
):
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
# 保持原有图像处理逻辑不变
|
| 111 |
size1, size2 = input_image["background"].convert("RGB").size
|
| 112 |
icc_profile = input_image["background"].info.get('icc_profile')
|
| 113 |
if icc_profile:
|
|
@@ -118,17 +114,25 @@ def predict(
|
|
| 118 |
input_image["background"] = ImageCms.profileToProfile(input_image["background"], src_profile, srgb_profile)
|
| 119 |
input_image["background"].info.pop('icc_profile', None)
|
| 120 |
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
# 保持原有seed处理逻辑
|
| 124 |
if seed == -1:
|
| 125 |
seed = random.randint(1, 2147483647)
|
| 126 |
-
set_seed(
|
| 127 |
else:
|
| 128 |
set_seed(seed)
|
| 129 |
-
|
| 130 |
-
# 保持原有mask处理逻辑
|
| 131 |
-
if image_state is None:
|
| 132 |
img=input_image["layers"][0]
|
| 133 |
img_data = np.array(img)
|
| 134 |
alpha_channel = img_data[:, :, 3]
|
|
@@ -138,8 +142,8 @@ def predict(
|
|
| 138 |
gray_image_pil = Image.fromarray(gray_image).convert('L')
|
| 139 |
else:
|
| 140 |
gray_image_pil = input_image["layers"][0]
|
| 141 |
-
|
| 142 |
-
|
| 143 |
result = pipe(
|
| 144 |
prompt=prompt,
|
| 145 |
control_image=input_image["background"].convert("RGB"),
|
|
@@ -152,7 +156,6 @@ def predict(
|
|
| 152 |
max_sequence_length=512,
|
| 153 |
).images[0]
|
| 154 |
|
| 155 |
-
# 保持原有后处理逻辑
|
| 156 |
mask_np = np.array(input_image["layers"][0].convert("RGB"))
|
| 157 |
red = np.array(input_image["background"]).astype("float") * 1
|
| 158 |
red[:, :, 0] = 180.0
|
|
@@ -166,19 +169,42 @@ def predict(
|
|
| 166 |
)
|
| 167 |
|
| 168 |
dict_res = [input_image["background"], input_image["layers"][0], result_m, result]
|
|
|
|
| 169 |
dict_out = [result]
|
| 170 |
-
|
|
|
|
| 171 |
return dict_out, dict_res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
-
# 示例处理函数
|
| 174 |
def process_example(image_paths, mask_paths):
|
|
|
|
| 175 |
image = Image.open(image_paths).convert("RGB")
|
| 176 |
mask = Image.open(mask_paths).convert("L")
|
| 177 |
black_background = Image.new("RGB", image.size, (0, 0, 0))
|
| 178 |
masked_image = Image.composite(black_background, image, mask)
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
|
|
|
| 182 |
custom_css = """
|
| 183 |
|
| 184 |
.contain { max-width: 1200px !important; }
|
|
@@ -235,7 +261,6 @@ custom_css = """
|
|
| 235 |
.panel { height: 100%; }
|
| 236 |
"""
|
| 237 |
|
| 238 |
-
|
| 239 |
with gr.Blocks(
|
| 240 |
css=custom_css,
|
| 241 |
theme=gr.themes.Soft(
|
|
@@ -245,20 +270,23 @@ with gr.Blocks(
|
|
| 245 |
),
|
| 246 |
title="Omnieraser"
|
| 247 |
) as demo:
|
| 248 |
-
# 添加状态存储
|
| 249 |
-
image_state = gr.State()
|
| 250 |
-
mask_state = gr.State()
|
| 251 |
|
| 252 |
-
|
| 253 |
ddim_steps = gr.Slider(visible=False, value=28)
|
| 254 |
scale = gr.Slider(visible=False, value=3.5)
|
| 255 |
seed = gr.Slider(visible=False, value=-1)
|
| 256 |
removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")
|
| 257 |
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
with gr.Row(equal_height=False):
|
| 260 |
with gr.Column(scale=1, variant="panel"):
|
| 261 |
gr.Markdown("## 📥 Input Panel")
|
|
|
|
| 262 |
with gr.Group():
|
| 263 |
input_image = gr.Sketchpad(
|
| 264 |
sources=["upload"],
|
|
@@ -268,7 +296,11 @@ with gr.Blocks(
|
|
| 268 |
interactive=True
|
| 269 |
)
|
| 270 |
with gr.Row(variant="compact"):
|
| 271 |
-
run_button = gr.Button(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
with gr.Group():
|
| 273 |
gr.Markdown("### ⚙️ Control Parameters")
|
| 274 |
seed = gr.Slider(
|
|
@@ -279,21 +311,21 @@ with gr.Blocks(
|
|
| 279 |
step=1,
|
| 280 |
info="-1 for random generation"
|
| 281 |
)
|
| 282 |
-
with gr.Column(variant="panel"):
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
|
| 298 |
with gr.Column(scale=1, variant="panel"):
|
| 299 |
gr.Markdown("## 📤 Output Panel")
|
|
@@ -306,6 +338,7 @@ with gr.Blocks(
|
|
| 306 |
preview=True,
|
| 307 |
object_fit="contain"
|
| 308 |
)
|
|
|
|
| 309 |
with gr.Tab("Visualization Steps"):
|
| 310 |
gallery = gr.Gallery(
|
| 311 |
label="Workflow Steps",
|
|
@@ -314,19 +347,16 @@ with gr.Blocks(
|
|
| 314 |
object_fit="contain"
|
| 315 |
)
|
| 316 |
|
| 317 |
-
# 更新按钮点击事件
|
| 318 |
run_button.click(
|
| 319 |
-
fn=
|
| 320 |
inputs=[
|
| 321 |
input_image,
|
| 322 |
ddim_steps,
|
| 323 |
seed,
|
| 324 |
scale,
|
| 325 |
removal_prompt,
|
| 326 |
-
image_state, # 添加状态输入
|
| 327 |
-
mask_state # 添加状态输入
|
| 328 |
],
|
| 329 |
outputs=[inpaint_result, gallery]
|
| 330 |
)
|
| 331 |
-
|
| 332 |
-
demo.launch()
|
|
|
|
| 7 |
import spaces
|
| 8 |
import gradio as gr
|
| 9 |
import numpy as np
|
| 10 |
+
|
| 11 |
from PIL import Image, ImageCms
|
| 12 |
import torch
|
| 13 |
from diffusers import FluxTransformer2DModel
|
| 14 |
from diffusers.utils import load_image
|
| 15 |
from pipeline_flux_control_removal import FluxControlRemovalPipeline
|
|
|
|
|
|
|
| 16 |
pipe = None
|
| 17 |
torch.set_grad_enabled(False)
|
| 18 |
+
image_path = mask_path =None
|
| 19 |
+
# image_examples = [
|
| 20 |
+
# [
|
| 21 |
+
# "example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
|
| 22 |
+
# "example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png"
|
| 23 |
+
# ],
|
| 24 |
+
# [
|
| 25 |
+
# "example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png",
|
| 26 |
+
# "example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png"
|
| 27 |
+
# ],
|
| 28 |
+
# [
|
| 29 |
+
# "example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png",
|
| 30 |
+
# "example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png"
|
| 31 |
+
# ],
|
| 32 |
+
# [
|
| 33 |
+
# "example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png",
|
| 34 |
+
# "example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png"
|
| 35 |
+
# ],
|
| 36 |
+
# [
|
| 37 |
+
# "example/image/9a3b6af9-c733-46a4-88d4-d77604194102.png",
|
| 38 |
+
# "example/mask/9a3b6af9-c733-46a4-88d4-d77604194102.png"
|
| 39 |
+
# ],
|
| 40 |
+
# [
|
| 41 |
+
# "example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png",
|
| 42 |
+
# "example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png"
|
| 43 |
+
# ],
|
| 44 |
+
# [
|
| 45 |
+
# "example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png",
|
| 46 |
+
# "example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png"
|
| 47 |
+
# ]
|
|
|
|
| 48 |
|
| 49 |
+
# ]
|
| 50 |
|
|
|
|
| 51 |
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
| 52 |
lora_path = 'theSure/Omnieraser'
|
| 53 |
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
|
| 54 |
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
|
| 55 |
+
# enable image inputs
|
| 56 |
with torch.no_grad():
|
| 57 |
initial_input_channels = transformer.config.in_channels
|
| 58 |
new_linear = torch.nn.Linear(
|
|
|
|
| 68 |
new_linear.bias.copy_(transformer.x_embedder.bias)
|
| 69 |
transformer.x_embedder = new_linear
|
| 70 |
transformer.register_to_config(in_channels=initial_input_channels*4)
|
|
|
|
| 71 |
pipe = FluxControlRemovalPipeline.from_pretrained(
|
| 72 |
base_model_path,
|
| 73 |
transformer=transformer,
|
|
|
|
| 79 |
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
|
| 80 |
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
|
| 81 |
|
|
|
|
| 82 |
@spaces.GPU
|
| 83 |
def set_seed(seed):
|
| 84 |
torch.manual_seed(seed)
|
|
|
|
| 87 |
np.random.seed(seed)
|
| 88 |
random.seed(seed)
|
| 89 |
|
|
|
|
| 90 |
@spaces.GPU
|
| 91 |
def predict(
|
| 92 |
input_image,
|
|
|
|
| 94 |
ddim_steps,
|
| 95 |
seed,
|
| 96 |
scale,
|
| 97 |
+
image_paths,
|
| 98 |
+
mask_paths
|
| 99 |
+
|
| 100 |
):
|
| 101 |
+
global image_path, mask_path
|
| 102 |
+
gr.Info(str(f"Set seed = {seed}"))
|
| 103 |
+
if image_paths is not None:
|
| 104 |
+
input_image["background"] = load_image(image_paths).convert("RGB")
|
| 105 |
+
input_image["layers"][0] = load_image(mask_paths).convert("RGB")
|
| 106 |
|
|
|
|
| 107 |
size1, size2 = input_image["background"].convert("RGB").size
|
| 108 |
icc_profile = input_image["background"].info.get('icc_profile')
|
| 109 |
if icc_profile:
|
|
|
|
| 114 |
input_image["background"] = ImageCms.profileToProfile(input_image["background"], src_profile, srgb_profile)
|
| 115 |
input_image["background"].info.pop('icc_profile', None)
|
| 116 |
|
| 117 |
+
if size1 < size2:
|
| 118 |
+
input_image["background"] = input_image["background"].convert("RGB").resize((1024, int(size2 / size1 * 1024)))
|
| 119 |
+
else:
|
| 120 |
+
input_image["background"] = input_image["background"].convert("RGB").resize((int(size1 / size2 * 1024), 1024))
|
| 121 |
+
|
| 122 |
+
img = np.array(input_image["background"].convert("RGB"))
|
| 123 |
+
|
| 124 |
+
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
|
| 125 |
+
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
|
| 126 |
+
|
| 127 |
+
input_image["background"] = input_image["background"].resize((H, W))
|
| 128 |
+
input_image["layers"][0] = input_image["layers"][0].resize((H, W))
|
| 129 |
|
|
|
|
| 130 |
if seed == -1:
|
| 131 |
seed = random.randint(1, 2147483647)
|
| 132 |
+
set_seed(random.randint(1, 2147483647))
|
| 133 |
else:
|
| 134 |
set_seed(seed)
|
| 135 |
+
if image_paths is None:
|
|
|
|
|
|
|
| 136 |
img=input_image["layers"][0]
|
| 137 |
img_data = np.array(img)
|
| 138 |
alpha_channel = img_data[:, :, 3]
|
|
|
|
| 142 |
gray_image_pil = Image.fromarray(gray_image).convert('L')
|
| 143 |
else:
|
| 144 |
gray_image_pil = input_image["layers"][0]
|
| 145 |
+
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
| 146 |
+
lora_path = 'theSure/Omnieraser'
|
| 147 |
result = pipe(
|
| 148 |
prompt=prompt,
|
| 149 |
control_image=input_image["background"].convert("RGB"),
|
|
|
|
| 156 |
max_sequence_length=512,
|
| 157 |
).images[0]
|
| 158 |
|
|
|
|
| 159 |
mask_np = np.array(input_image["layers"][0].convert("RGB"))
|
| 160 |
red = np.array(input_image["background"]).astype("float") * 1
|
| 161 |
red[:, :, 0] = 180.0
|
|
|
|
| 169 |
)
|
| 170 |
|
| 171 |
dict_res = [input_image["background"], input_image["layers"][0], result_m, result]
|
| 172 |
+
|
| 173 |
dict_out = [result]
|
| 174 |
+
image_path = None
|
| 175 |
+
mask_path = None
|
| 176 |
return dict_out, dict_res
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def infer(
|
| 180 |
+
input_image,
|
| 181 |
+
ddim_steps,
|
| 182 |
+
seed,
|
| 183 |
+
scale,
|
| 184 |
+
removal_prompt,
|
| 185 |
+
|
| 186 |
+
):
|
| 187 |
+
img_path = image_path
|
| 188 |
+
msk_path = mask_path
|
| 189 |
+
return predict(input_image,
|
| 190 |
+
removal_prompt,
|
| 191 |
+
ddim_steps,
|
| 192 |
+
seed,
|
| 193 |
+
scale,
|
| 194 |
+
img_path,
|
| 195 |
+
msk_path
|
| 196 |
+
)
|
| 197 |
|
|
|
|
| 198 |
def process_example(image_paths, mask_paths):
|
| 199 |
+
global image_path, mask_path
|
| 200 |
image = Image.open(image_paths).convert("RGB")
|
| 201 |
mask = Image.open(mask_paths).convert("L")
|
| 202 |
black_background = Image.new("RGB", image.size, (0, 0, 0))
|
| 203 |
masked_image = Image.composite(black_background, image, mask)
|
| 204 |
+
|
| 205 |
+
image_path = image_paths
|
| 206 |
+
mask_path = mask_paths
|
| 207 |
+
return masked_image
|
| 208 |
custom_css = """
|
| 209 |
|
| 210 |
.contain { max-width: 1200px !important; }
|
|
|
|
| 261 |
.panel { height: 100%; }
|
| 262 |
"""
|
| 263 |
|
|
|
|
| 264 |
with gr.Blocks(
|
| 265 |
css=custom_css,
|
| 266 |
theme=gr.themes.Soft(
|
|
|
|
| 270 |
),
|
| 271 |
title="Omnieraser"
|
| 272 |
) as demo:
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
+
|
| 275 |
ddim_steps = gr.Slider(visible=False, value=28)
|
| 276 |
scale = gr.Slider(visible=False, value=3.5)
|
| 277 |
seed = gr.Slider(visible=False, value=-1)
|
| 278 |
removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")
|
| 279 |
|
| 280 |
+
gr.Markdown("""
|
| 281 |
+
<div align="center">
|
| 282 |
+
<h1 style="font-size: 2.5em; margin-bottom: 0.5em;">🪄 Omnieraser</h1>
|
| 283 |
+
</div>
|
| 284 |
+
""")
|
| 285 |
+
|
| 286 |
with gr.Row(equal_height=False):
|
| 287 |
with gr.Column(scale=1, variant="panel"):
|
| 288 |
gr.Markdown("## 📥 Input Panel")
|
| 289 |
+
|
| 290 |
with gr.Group():
|
| 291 |
input_image = gr.Sketchpad(
|
| 292 |
sources=["upload"],
|
|
|
|
| 296 |
interactive=True
|
| 297 |
)
|
| 298 |
with gr.Row(variant="compact"):
|
| 299 |
+
run_button = gr.Button(
|
| 300 |
+
"🚀 Start Processing",
|
| 301 |
+
variant="primary",
|
| 302 |
+
size="lg"
|
| 303 |
+
)
|
| 304 |
with gr.Group():
|
| 305 |
gr.Markdown("### ⚙️ Control Parameters")
|
| 306 |
seed = gr.Slider(
|
|
|
|
| 311 |
step=1,
|
| 312 |
info="-1 for random generation"
|
| 313 |
)
|
| 314 |
+
# with gr.Column(variant="panel"):
|
| 315 |
+
# gr.Markdown("### 🖼️ Example Gallery", elem_classes=["example-title"])
|
| 316 |
+
# example = gr.Examples(
|
| 317 |
+
# examples=image_examples,
|
| 318 |
+
# inputs=[
|
| 319 |
+
# gr.Image(label="Image", type="filepath",visible=False),
|
| 320 |
+
# gr.Image(label="Mask", type="filepath",visible=False)
|
| 321 |
+
# ],
|
| 322 |
+
# outputs=[input_image],
|
| 323 |
+
# fn=process_example,
|
| 324 |
+
# run_on_click=True,
|
| 325 |
+
# examples_per_page=10,
|
| 326 |
+
# label="Click any example to load",
|
| 327 |
+
# elem_id="inline-examples"
|
| 328 |
+
# )
|
| 329 |
|
| 330 |
with gr.Column(scale=1, variant="panel"):
|
| 331 |
gr.Markdown("## 📤 Output Panel")
|
|
|
|
| 338 |
preview=True,
|
| 339 |
object_fit="contain"
|
| 340 |
)
|
| 341 |
+
|
| 342 |
with gr.Tab("Visualization Steps"):
|
| 343 |
gallery = gr.Gallery(
|
| 344 |
label="Workflow Steps",
|
|
|
|
| 347 |
object_fit="contain"
|
| 348 |
)
|
| 349 |
|
|
|
|
| 350 |
run_button.click(
|
| 351 |
+
fn=infer,
|
| 352 |
inputs=[
|
| 353 |
input_image,
|
| 354 |
ddim_steps,
|
| 355 |
seed,
|
| 356 |
scale,
|
| 357 |
removal_prompt,
|
|
|
|
|
|
|
| 358 |
],
|
| 359 |
outputs=[inpaint_result, gallery]
|
| 360 |
)
|
| 361 |
+
|
| 362 |
+
demo.launch()
|