Update app.py
Browse files
app.py
CHANGED
@@ -1,179 +1 @@
|
|
1 |
-
|
2 |
-
import re
|
3 |
-
from langdetect import detect
|
4 |
-
from transformers import pipeline
|
5 |
-
import nltk
|
6 |
-
from docx import Document
|
7 |
-
import io
|
8 |
-
|
9 |
-
# Download required NLTK resources
|
10 |
-
nltk.download('punkt')
|
11 |
-
|
12 |
-
# Load AI models once to optimize performance
|
13 |
-
try:
|
14 |
-
tone_model = pipeline("zero-shot-classification", model="cross-encoder/nli-deberta-v3-large")
|
15 |
-
except OSError:
|
16 |
-
st.error("Failed to load tone analysis model. Please check internet connection or model availability.")
|
17 |
-
|
18 |
-
try:
|
19 |
-
frame_model = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
20 |
-
except OSError:
|
21 |
-
st.error("Failed to load frame classification model. Please check internet connection or model availability.")
|
22 |
-
|
23 |
-
# Updated tone categories
|
24 |
-
tone_categories = [
|
25 |
-
"Emotional & Urgent", "Harsh & Critical", "Negative & Somber",
|
26 |
-
"Empowering & Motivational", "Neutral & Informative", "Hopeful & Positive"
|
27 |
-
]
|
28 |
-
|
29 |
-
# Updated frame categories
|
30 |
-
frame_categories = [
|
31 |
-
"Human Rights & Justice", "Political & State Accountability", "Gender & Patriarchy",
|
32 |
-
"Religious Freedom & Persecution", "Grassroots Mobilization", "Environmental Crisis & Activism",
|
33 |
-
"Anti-Extremism & Anti-Violence", "Social Inequality & Economic Disparities"
|
34 |
-
]
|
35 |
-
|
36 |
-
# Detect language
|
37 |
-
def detect_language(text):
|
38 |
-
try:
|
39 |
-
return detect(text)
|
40 |
-
except Exception:
|
41 |
-
return "unknown"
|
42 |
-
|
43 |
-
# Analyze tone using DeBERTa model
|
44 |
-
def analyze_tone(text):
|
45 |
-
try:
|
46 |
-
model_result = tone_model(text, candidate_labels=tone_categories)
|
47 |
-
return model_result["labels"][:2] # Top 2 tone labels
|
48 |
-
except Exception as e:
|
49 |
-
st.error(f"Error analyzing tone: {e}")
|
50 |
-
return ["Unknown"]
|
51 |
-
|
52 |
-
# Extract frames using BART model
|
53 |
-
def extract_frames(text):
|
54 |
-
try:
|
55 |
-
model_result = frame_model(text, candidate_labels=frame_categories)
|
56 |
-
return model_result["labels"][:2] # Top 2 frame labels
|
57 |
-
except Exception as e:
|
58 |
-
st.error(f"Error extracting frames: {e}")
|
59 |
-
return ["Unknown"]
|
60 |
-
|
61 |
-
# Extract hashtags
|
62 |
-
def extract_hashtags(text):
|
63 |
-
return re.findall(r"#\w+", text)
|
64 |
-
|
65 |
-
# Extract captions from DOCX file
|
66 |
-
def extract_captions_from_docx(docx_file):
|
67 |
-
doc = Document(docx_file)
|
68 |
-
captions = {}
|
69 |
-
current_post = None
|
70 |
-
for para in doc.paragraphs:
|
71 |
-
text = para.text.strip()
|
72 |
-
if re.match(r"Post \d+", text, re.IGNORECASE):
|
73 |
-
current_post = text
|
74 |
-
captions[current_post] = []
|
75 |
-
elif current_post:
|
76 |
-
captions[current_post].append(text)
|
77 |
-
|
78 |
-
return {post: " ".join(lines) for post, lines in captions.items() if lines}
|
79 |
-
|
80 |
-
# Generate a DOCX file in-memory
|
81 |
-
def generate_docx(output_data):
|
82 |
-
doc = Document()
|
83 |
-
doc.add_heading('Activism Message Analysis', 0)
|
84 |
-
|
85 |
-
for index, (caption, result) in enumerate(output_data.items(), start=1):
|
86 |
-
doc.add_heading(f"{index}. {caption}", level=1)
|
87 |
-
doc.add_paragraph("Full Caption:")
|
88 |
-
doc.add_paragraph(result['Full Caption'], style="Quote")
|
89 |
-
|
90 |
-
doc.add_paragraph(f"Language: {result['Language']}")
|
91 |
-
doc.add_paragraph(f"Tone of Caption: {', '.join(result['Tone of Caption'])}")
|
92 |
-
doc.add_paragraph(f"Number of Hashtags: {result['Hashtag Count']}")
|
93 |
-
doc.add_paragraph(f"Hashtags Found: {', '.join(result['Hashtags'])}")
|
94 |
-
|
95 |
-
doc.add_heading('Frames:', level=2)
|
96 |
-
for frame in result['Frames']:
|
97 |
-
doc.add_paragraph(frame)
|
98 |
-
|
99 |
-
doc_io = io.BytesIO()
|
100 |
-
doc.save(doc_io)
|
101 |
-
doc_io.seek(0)
|
102 |
-
|
103 |
-
return doc_io
|
104 |
-
|
105 |
-
# Streamlit app UI
|
106 |
-
st.title('AI-Powered Activism Message Analyzer')
|
107 |
-
|
108 |
-
st.write("Enter the text to analyze or upload a DOCX file containing captions:")
|
109 |
-
|
110 |
-
# Text Input
|
111 |
-
input_text = st.text_area("Input Text", height=200)
|
112 |
-
|
113 |
-
# File Upload
|
114 |
-
uploaded_file = st.file_uploader("Upload a DOCX file", type=["docx"])
|
115 |
-
|
116 |
-
# Initialize output dictionary
|
117 |
-
output_data = {}
|
118 |
-
|
119 |
-
if input_text:
|
120 |
-
language = detect_language(input_text)
|
121 |
-
tone = analyze_tone(input_text)
|
122 |
-
hashtags = extract_hashtags(input_text)
|
123 |
-
frames = extract_frames(input_text)
|
124 |
-
|
125 |
-
output_data["Manual Input"] = {
|
126 |
-
'Full Caption': input_text,
|
127 |
-
'Language': language,
|
128 |
-
'Tone of Caption': tone,
|
129 |
-
'Hashtags': hashtags,
|
130 |
-
'Hashtag Count': len(hashtags),
|
131 |
-
'Frames': frames
|
132 |
-
}
|
133 |
-
|
134 |
-
st.success("Analysis completed for text input.")
|
135 |
-
|
136 |
-
if uploaded_file:
|
137 |
-
captions = extract_captions_from_docx(uploaded_file)
|
138 |
-
for caption, text in captions.items():
|
139 |
-
language = detect_language(text)
|
140 |
-
tone = analyze_tone(text)
|
141 |
-
hashtags = extract_hashtags(text)
|
142 |
-
frames = extract_frames(text)
|
143 |
-
|
144 |
-
output_data[caption] = {
|
145 |
-
'Full Caption': text,
|
146 |
-
'Language': language,
|
147 |
-
'Tone of Caption': tone,
|
148 |
-
'Hashtags': hashtags,
|
149 |
-
'Hashtag Count': len(hashtags),
|
150 |
-
'Frames': frames
|
151 |
-
}
|
152 |
-
|
153 |
-
st.success(f"Analysis completed for {len(captions)} posts from the DOCX file.")
|
154 |
-
|
155 |
-
# Display results
|
156 |
-
if output_data:
|
157 |
-
with st.expander("Generated Output"):
|
158 |
-
st.subheader("Analysis Results")
|
159 |
-
for index, (caption, result) in enumerate(output_data.items(), start=1):
|
160 |
-
st.write(f"### {index}. {caption}")
|
161 |
-
st.write("**Full Caption:**")
|
162 |
-
st.write(f"> {result['Full Caption']}")
|
163 |
-
st.write(f"**Language**: {result['Language']}")
|
164 |
-
st.write(f"**Tone of Caption**: {', '.join(result['Tone of Caption'])}")
|
165 |
-
st.write(f"**Number of Hashtags**: {result['Hashtag Count']}")
|
166 |
-
st.write(f"**Hashtags Found:** {', '.join(result['Hashtags'])}")
|
167 |
-
st.write("**Frames**:")
|
168 |
-
for frame in result['Frames']:
|
169 |
-
st.write(f"- {frame}")
|
170 |
-
|
171 |
-
docx_file = generate_docx(output_data)
|
172 |
-
|
173 |
-
if docx_file:
|
174 |
-
st.download_button(
|
175 |
-
label="Download Analysis as DOCX",
|
176 |
-
data=docx_file,
|
177 |
-
file_name="activism_message_analysis.docx",
|
178 |
-
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
179 |
-
)
|
|
|
1 |
+
print("hello world")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|