File size: 24,071 Bytes
d1afbc8 184daaa 8cedcd0 d1afbc8 c188e5c d1afbc8 c188e5c d1afbc8 c188e5c eb5d99b d1afbc8 c188e5c d1afbc8 c188e5c d1afbc8 8cedcd0 d1afbc8 8cedcd0 d1afbc8 8cedcd0 d1afbc8 8cedcd0 d1afbc8 8cedcd0 d1afbc8 8cedcd0 d41a575 8cedcd0 d1afbc8 8cedcd0 d1afbc8 8cedcd0 d1afbc8 184daaa 8cedcd0 d41a575 8cedcd0 a9330a3 8cedcd0 a9330a3 d41a575 a9330a3 8cedcd0 a9330a3 8cedcd0 a9330a3 8cedcd0 bf8ae4c a9330a3 8cedcd0 bf8ae4c 8cedcd0 bf8ae4c 8cedcd0 a9330a3 bf8ae4c 8cedcd0 bf8ae4c 8cedcd0 bf8ae4c 8cedcd0 bf8ae4c 8cedcd0 a9330a3 bf8ae4c a9330a3 bf8ae4c 8cedcd0 bf8ae4c 8cedcd0 6460c54 8cedcd0 783cbeb 8cedcd0 783cbeb 8cedcd0 d1afbc8 eb5d99b 1b98b73 eb5d99b 1b98b73 9fb3c06 eb5d99b c4dc2c2 9fb3c06 eb5d99b c4dc2c2 eb5d99b 9fb3c06 c4dc2c2 eb5d99b c4dc2c2 eb5d99b 9fb3c06 eb5d99b 9fb3c06 eb5d99b 9fb3c06 eb5d99b 9fb3c06 eb5d99b 9fb3c06 c4dc2c2 9fb3c06 eb5d99b c4dc2c2 184daaa eb5d99b 184daaa d1afbc8 1b98b73 eb5d99b 1b98b73 eb5d99b 1b98b73 eb5d99b 1b98b73 eb5d99b 1b98b73 eb5d99b 1b98b73 d1afbc8 1b98b73 eb5d99b 1b98b73 eb5d99b 1b98b73 eb5d99b d1afbc8 eb5d99b 1b98b73 eb5d99b 1b98b73 d1afbc8 eb5d99b d1afbc8 1b98b73 c4dc2c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
# jam_worker.py - SIMPLE FIX VERSION
import threading, time, base64, io, uuid
from dataclasses import dataclass, field
import numpy as np
import soundfile as sf
from magenta_rt import audio as au
from threading import RLock
from utils import (
match_loudness_to_reference, stitch_generated, hard_trim_seconds,
apply_micro_fades, make_bar_aligned_context, take_bar_aligned_tail,
resample_and_snap, wav_bytes_base64
)
@dataclass
class JamParams:
bpm: float
beats_per_bar: int
bars_per_chunk: int
target_sr: int
loudness_mode: str = "auto"
headroom_db: float = 1.0
style_vec: np.ndarray | None = None
ref_loop: any = None
combined_loop: any = None
guidance_weight: float = 1.1
temperature: float = 1.1
topk: int = 40
@dataclass
class JamChunk:
index: int
audio_base64: str
metadata: dict
class JamWorker(threading.Thread):
def __init__(self, mrt, params: JamParams):
super().__init__(daemon=True)
self.mrt = mrt
self.params = params
self.state = mrt.init_state()
# β
init synchronization + placeholders FIRST
self._lock = threading.Lock()
self._original_context_tokens = None # so hasattr checks are cheap/clear
if params.combined_loop is not None:
self._setup_context_from_combined_loop()
self.idx = 0
self.outbox: list[JamChunk] = []
self._stop_event = threading.Event()
self._stream = None
self._next_emit_start = 0
# NEW: Track delivery state
self._last_delivered_index = 0
self._max_buffer_ahead = 5
# Timing info
self.last_chunk_started_at = None
self.last_chunk_completed_at = None
def _setup_context_from_combined_loop(self):
"""Set up MRT context tokens from the combined loop audio"""
try:
from utils import make_bar_aligned_context, take_bar_aligned_tail
codec_fps = float(self.mrt.codec.frame_rate)
ctx_seconds = float(self.mrt.config.context_length_frames) / codec_fps
loop_for_context = take_bar_aligned_tail(
self.params.combined_loop,
self.params.bpm,
self.params.beats_per_bar,
ctx_seconds
)
tokens_full = self.mrt.codec.encode(loop_for_context).astype(np.int32)
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth]
context_tokens = make_bar_aligned_context(
tokens,
bpm=self.params.bpm,
fps=float(self.mrt.codec.frame_rate), # keep fractional fps
ctx_frames=self.mrt.config.context_length_frames,
beats_per_bar=self.params.beats_per_bar
)
# Install fresh context
self.state.context_tokens = context_tokens
print(f"β
JamWorker: Set up fresh context from combined loop")
# NEW: keep a copy of the *original* context tokens for future splice-reseed
# (guard so we only set this once, at jam start)
with self._lock:
if not hasattr(self, "_original_context_tokens") or self._original_context_tokens is None:
self._original_context_tokens = np.copy(context_tokens) # shape: [T, depth]
except Exception as e:
print(f"β Failed to setup context from combined loop: {e}")
def stop(self):
self._stop_event.set()
def update_knobs(self, *, guidance_weight=None, temperature=None, topk=None):
with self._lock:
if guidance_weight is not None: self.params.guidance_weight = float(guidance_weight)
if temperature is not None: self.params.temperature = float(temperature)
if topk is not None: self.params.topk = int(topk)
def get_next_chunk(self) -> JamChunk | None:
"""Get the next sequential chunk (blocks/waits if not ready)"""
target_index = self._last_delivered_index + 1
# Wait for the target chunk to be ready (with timeout)
max_wait = 30.0 # seconds
start_time = time.time()
while time.time() - start_time < max_wait and not self._stop_event.is_set():
with self._lock:
# Look for the exact chunk we need
for chunk in self.outbox:
if chunk.index == target_index:
self._last_delivered_index = target_index
print(f"π¦ Delivered chunk {target_index}")
return chunk
# Not ready yet, wait a bit
time.sleep(0.1)
# Timeout or stopped
return None
def mark_chunk_consumed(self, chunk_index: int):
"""Mark a chunk as consumed by the frontend"""
with self._lock:
self._last_delivered_index = max(self._last_delivered_index, chunk_index)
print(f"β
Chunk {chunk_index} consumed")
def _should_generate_next_chunk(self) -> bool:
"""Check if we should generate the next chunk (don't get too far ahead)"""
with self._lock:
# Don't generate if we're already too far ahead
if self.idx > self._last_delivered_index + self._max_buffer_ahead:
return False
return True
def _seconds_per_bar(self) -> float:
return self.params.beats_per_bar * (60.0 / self.params.bpm)
def _snap_and_encode(self, y, seconds, target_sr, bars):
cur_sr = int(self.mrt.sample_rate)
x = y.samples if y.samples.ndim == 2 else y.samples[:, None]
x = resample_and_snap(x, cur_sr=cur_sr, target_sr=target_sr, seconds=seconds)
b64, total_samples, channels = wav_bytes_base64(x, target_sr)
meta = {
"bpm": int(round(self.params.bpm)),
"bars": int(bars),
"beats_per_bar": int(self.params.beats_per_bar),
"sample_rate": int(target_sr),
"channels": channels,
"total_samples": total_samples,
"seconds_per_bar": self._seconds_per_bar(),
"loop_duration_seconds": bars * self._seconds_per_bar(),
"guidance_weight": self.params.guidance_weight,
"temperature": self.params.temperature,
"topk": self.params.topk,
}
return b64, meta
def _append_model_chunk_to_stream(self, wav):
"""Incrementally append a model chunk with equal-power crossfade."""
xfade_s = float(self.mrt.config.crossfade_length)
sr = int(self.mrt.sample_rate)
xfade_n = int(round(xfade_s * sr))
s = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None]
if getattr(self, "_stream", None) is None:
# First chunk: drop model pre-roll (xfade head)
if s.shape[0] > xfade_n:
self._stream = s[xfade_n:].astype(np.float32, copy=True)
else:
self._stream = np.zeros((0, s.shape[1]), dtype=np.float32)
self._next_emit_start = 0 # pointer into _stream (model SR samples)
return
# Crossfade last xfade_n samples of _stream with head of new s
if s.shape[0] <= xfade_n or self._stream.shape[0] < xfade_n:
# Degenerate safeguard
self._stream = np.concatenate([self._stream, s], axis=0)
return
tail = self._stream[-xfade_n:]
head = s[:xfade_n]
# Equal-power envelopes
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)[:, None]
eq_in, eq_out = np.sin(t), np.cos(t)
mixed = tail * eq_out + head * eq_in
self._stream = np.concatenate([self._stream[:-xfade_n], mixed, s[xfade_n:]], axis=0)
def reseed_from_waveform(self, wav):
# 1) Re-init state
new_state = self.mrt.init_state()
# 2) Build bar-aligned context tokens from provided audio
codec_fps = float(self.mrt.codec.frame_rate)
ctx_seconds = float(self.mrt.config.context_length_frames) / codec_fps
from utils import take_bar_aligned_tail, make_bar_aligned_context
tail = take_bar_aligned_tail(wav, self.params.bpm, self.params.beats_per_bar, ctx_seconds)
tokens_full = self.mrt.codec.encode(tail).astype(np.int32)
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth]
context_tokens = make_bar_aligned_context(tokens,
bpm=self.params.bpm, fps=float(self.mrt.codec.frame_rate),
ctx_frames=self.mrt.config.context_length_frames,
beats_per_bar=self.params.beats_per_bar
)
new_state.context_tokens = context_tokens
self.state = new_state
self._prepare_stream_for_reseed_handoff()
def _frames_per_bar(self) -> int:
# codec frame-rate (frames/s) -> frames per musical bar
fps = float(self.mrt.codec.frame_rate)
sec_per_bar = (60.0 / float(self.params.bpm)) * float(self.params.beats_per_bar)
return int(round(fps * sec_per_bar))
def _ctx_frames(self) -> int:
# how many codec frames fit in the modelβs conditioning window
return int(self.mrt.config.context_length_frames)
def _make_recent_tokens_from_wave(self, wav) -> np.ndarray:
"""
Encode waveform and produce a BAR-ALIGNED context token window.
"""
tokens_full = self.mrt.codec.encode(wav).astype(np.int32) # [T, rvq_total]
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth]
from utils import make_bar_aligned_context
ctx = make_bar_aligned_context(
tokens,
bpm=self.params.bpm,
fps=float(self.mrt.codec.frame_rate), # keep fractional fps
ctx_frames=self.mrt.config.context_length_frames,
beats_per_bar=self.params.beats_per_bar
)
return ctx
def _bar_aligned_tail(self, tokens: np.ndarray, bars: float) -> np.ndarray:
"""
Take a tail slice that is an integer number of codec frames corresponding to `bars`.
We round to nearest frame to stay phase-consistent with codec grid.
"""
frames_per_bar = self._frames_per_bar()
want = max(frames_per_bar * int(round(bars)), 0)
if want == 0:
return tokens[:0] # empty
if tokens.shape[0] <= want:
return tokens
return tokens[-want:]
def _splice_context(self, original_tokens: np.ndarray, recent_tokens: np.ndarray,
anchor_bars: float) -> np.ndarray:
import math
ctx_frames = self._ctx_frames()
depth = original_tokens.shape[1]
frames_per_bar = self._frames_per_bar()
# 1) Anchor tail (whole bars)
anchor = self._bar_aligned_tail(original_tokens, math.floor(anchor_bars))
# 2) Fill remainder with recent (prefer whole bars)
a = anchor.shape[0]
remain = max(ctx_frames - a, 0)
recent = recent_tokens[:0]
used_recent = 0 # frames taken from the END of recent_tokens
if remain > 0:
bars_fit = remain // frames_per_bar
if bars_fit >= 1:
want_recent_frames = int(bars_fit * frames_per_bar)
used_recent = min(want_recent_frames, recent_tokens.shape[0])
recent = recent_tokens[-used_recent:] if used_recent > 0 else recent_tokens[:0]
else:
used_recent = min(remain, recent_tokens.shape[0])
recent = recent_tokens[-used_recent:] if used_recent > 0 else recent_tokens[:0]
# 3) Concat in order [anchor, recent]
if anchor.size or recent.size:
out = np.concatenate([anchor, recent], axis=0)
else:
# fallback: just take the last ctx window from recent
out = recent_tokens[-ctx_frames:]
# 4) Trim if we overshot
if out.shape[0] > ctx_frames:
out = out[-ctx_frames:]
# 5) Snap the **END** to the nearest LOWER bar boundary
if frames_per_bar > 0:
max_bar_aligned = (out.shape[0] // frames_per_bar) * frames_per_bar
else:
max_bar_aligned = out.shape[0]
if max_bar_aligned > 0 and out.shape[0] != max_bar_aligned:
out = out[-max_bar_aligned:]
# 6) Left-fill to reach ctx_frames **without moving the END**
deficit = ctx_frames - out.shape[0]
if deficit > 0:
left_parts = []
# Prefer frames immediately BEFORE the region we used from 'recent_tokens'
if used_recent < recent_tokens.shape[0]:
take = min(deficit, recent_tokens.shape[0] - used_recent)
if used_recent > 0:
left_parts.append(recent_tokens[-(used_recent + take) : -used_recent])
else:
left_parts.append(recent_tokens[-take:])
# Then take frames immediately BEFORE the 'anchor' in original_tokens
if sum(p.shape[0] for p in left_parts) < deficit and anchor.shape[0] > 0:
need = deficit - sum(p.shape[0] for p in left_parts)
a_len = anchor.shape[0]
avail = max(original_tokens.shape[0] - a_len, 0)
take2 = min(need, avail)
if take2 > 0:
left_parts.append(original_tokens[-(a_len + take2) : -a_len])
# Still short? tile from what's available
have = sum(p.shape[0] for p in left_parts)
if have < deficit:
base = out if out.shape[0] > 0 else (recent_tokens if recent_tokens.shape[0] > 0 else original_tokens)
reps = int(np.ceil((deficit - have) / max(1, base.shape[0])))
left_parts.append(np.tile(base, (reps, 1))[: (deficit - have)])
left = np.concatenate(left_parts, axis=0)
out = np.concatenate([left[-deficit:], out], axis=0)
# 7) Final guard to exact length
if out.shape[0] > ctx_frames:
out = out[-ctx_frames:]
elif out.shape[0] < ctx_frames:
reps = int(np.ceil(ctx_frames / max(1, out.shape[0])))
out = np.tile(out, (reps, 1))[-ctx_frames:]
# 8) Depth guard
if out.shape[1] != depth:
out = out[:, :depth]
return out
def _realign_emit_pointer_to_bar(self, sr_model: int):
"""Advance _next_emit_start to the next bar boundary in model-sample space."""
bar_samps = int(round(self._seconds_per_bar() * sr_model))
if bar_samps <= 0:
return
phase = self._next_emit_start % bar_samps
if phase != 0:
self._next_emit_start += (bar_samps - phase)
def _prepare_stream_for_reseed_handoff(self):
# OLD: keep crossfade tail -> causes phase offset
# sr = int(self.mrt.sample_rate)
# xfade_s = float(self.mrt.config.crossfade_length)
# xfade_n = int(round(xfade_s * sr))
# if getattr(self, "_stream", None) is not None and self._stream.shape[0] > 0:
# tail = self._stream[-xfade_n:] if self._stream.shape[0] > xfade_n else self._stream
# self._stream = tail.copy()
# else:
# self._stream = None
# NEW: throw away the tail completely; start fresh
self._stream = None
self._next_emit_start = 0
self._needs_bar_realign = True
def reseed_splice(self, recent_wav, anchor_bars: float):
"""
Token-splice reseed:
- original = the context we captured when the jam started
- recent = tokens from the provided recent waveform (usually Swift-combined mix)
- anchor_bars controls how much of the original vibe we re-inject
"""
with self._lock:
if not hasattr(self, "_original_context_tokens") or self._original_context_tokens is None:
# Fallback: if we somehow donβt have originals, treat current as originals
self._original_context_tokens = np.copy(self.state.context_tokens)
recent_tokens = self._make_recent_tokens_from_wave(recent_wav) # [T, depth]
new_ctx = self._splice_context(self._original_context_tokens, recent_tokens, anchor_bars)
# install the new context window
new_state = self.mrt.init_state()
new_state.context_tokens = new_ctx
self.state = new_state
self._prepare_stream_for_reseed_handoff()
# optional: ask streamer to drop an intro crossfade worth of audio right after reseed
self._pending_drop_intro_bars = getattr(self, "_pending_drop_intro_bars", 0) + 1
def run(self):
"""Main worker loop β generate into a continuous stream, then emit bar-aligned slices."""
spb = self._seconds_per_bar() # seconds per bar
chunk_secs = self.params.bars_per_chunk * spb
xfade = float(self.mrt.config.crossfade_length) # seconds
sr = int(self.mrt.sample_rate)
chunk_samps = int(round(chunk_secs * sr))
def _need(first_chunk_extra=False):
"""How many more samples we still need in the stream to emit next slice."""
have = 0 if getattr(self, "_stream", None) is None else self._stream.shape[0] - getattr(self, "_next_emit_start", 0)
want = chunk_samps
if first_chunk_extra:
# reserve two bars extra so first-chunk onset alignment has material
want += int(round(2 * spb * sr))
return max(0, want - have)
def _mono_env(x: np.ndarray, sr: int, win_ms: float = 10.0) -> np.ndarray:
if x.ndim == 2: x = x.mean(axis=1)
x = np.abs(x).astype(np.float32)
w = max(1, int(round(win_ms * 1e-3 * sr)))
if w > 1:
kern = np.ones(w, dtype=np.float32) / float(w)
x = np.convolve(x, kern, mode="same")
d = np.diff(x, prepend=x[:1])
d[d < 0] = 0.0
return d
def _estimate_first_offset_samples(ref_loop_wav, gen_head_wav, sr: int, spb: float) -> int:
"""Tempo-aware first-downbeat offset (positive => model late)."""
try:
max_ms = int(max(160.0, min(0.25 * spb * 1000.0, 450.0)))
ref = ref_loop_wav if ref_loop_wav.sample_rate == sr else ref_loop_wav.resample(sr)
n_bar = int(round(spb * sr))
ref_tail = ref.samples[-n_bar:, :] if ref.samples.shape[0] >= n_bar else ref.samples
gen_head = gen_head_wav.samples[: int(2 * n_bar), :]
if ref_tail.size == 0 or gen_head.size == 0:
return 0
# envelopes + z-score
import numpy as np
def _z(a):
m, s = float(a.mean()), float(a.std() or 1.0); return (a - m) / s
e_ref = _z(_mono_env(ref_tail, sr)).astype(np.float32)
e_gen = _z(_mono_env(gen_head, sr)).astype(np.float32)
# upsample x4 for finer lag
def _upsample(a, r=4):
n = len(a); grid = np.arange(n, dtype=np.float32)
fine = np.linspace(0, n - 1, num=n * r, dtype=np.float32)
return np.interp(fine, grid, a).astype(np.float32)
up = 4
e_ref_u, e_gen_u = _upsample(e_ref, up), _upsample(e_gen, up)
max_lag_u = int(round((max_ms / 1000.0) * sr * up))
seg = min(len(e_ref_u), len(e_gen_u))
e_ref_u = e_ref_u[-seg:]
pad = np.zeros(max_lag_u, dtype=np.float32)
e_gen_u_pad = np.concatenate([pad, e_gen_u, pad])
best_lag_u, best_score = 0, -1e9
for lag_u in range(-max_lag_u, max_lag_u + 1):
start = max_lag_u + lag_u
b = e_gen_u_pad[start : start + seg]
denom = (np.linalg.norm(e_ref_u) * np.linalg.norm(b)) or 1.0
score = float(np.dot(e_ref_u, b) / denom)
if score > best_score:
best_score, best_lag_u = score, lag_u
return int(round(best_lag_u / up))
except Exception:
return 0
print("π JamWorker started (bar-aligned streaming)β¦")
while not self._stop_event.is_set():
if not self._should_generate_next_chunk():
time.sleep(0.25)
continue
# 1) Generate until we have enough material in the stream
need = _need(first_chunk_extra=(self.idx == 0))
while need > 0 and not self._stop_event.is_set():
with self._lock:
style_vec = self.params.style_vec
self.mrt.guidance_weight = float(self.params.guidance_weight)
self.mrt.temperature = float(self.params.temperature)
self.mrt.topk = int(self.params.topk)
wav, self.state = self.mrt.generate_chunk(state=self.state, style=style_vec)
self._append_model_chunk_to_stream(wav) # equal-power xfade into a persistent stream
need = _need(first_chunk_extra=(self.idx == 0))
if self._stop_event.is_set():
break
# 2) One-time: align the emit pointer to the groove
if self.idx == 0 and self.params.combined_loop is not None:
# Compare ref tail vs the head of what we're about to emit
head_len = min(self._stream.shape[0] - self._next_emit_start, int(round(2 * spb * sr)))
seg = self._stream[self._next_emit_start : self._next_emit_start + head_len]
gen_head = au.Waveform(seg.astype(np.float32, copy=False), sr).as_stereo()
offs = _estimate_first_offset_samples(self.params.combined_loop, gen_head, sr, spb)
if offs != 0:
# positive => model late: skip some samples; negative => model early: "rewind" by padding
self._next_emit_start = max(0, self._next_emit_start + offs)
print(f"π― First-chunk offset compensation: {offs/sr:+.3f}s")
# snap to next bar boundary
self._realign_emit_pointer_to_bar(sr)
# 3) Emit exactly bars_per_chunk Γ spb from the stream
start = self._next_emit_start
end = start + chunk_samps
if end > self._stream.shape[0]:
# shouldn't happen often; generate a bit more and loop
continue
slice_ = self._stream[start:end]
self._next_emit_start = end
y = au.Waveform(slice_.astype(np.float32, copy=False), sr).as_stereo()
# 4) Post-processing / loudness
if self.idx == 0 and self.params.ref_loop is not None:
y, _ = match_loudness_to_reference(
self.params.ref_loop, y,
method=self.params.loudness_mode,
headroom_db=self.params.headroom_db
)
else:
apply_micro_fades(y, 3)
# 5) Resample + exact-length snap + encode
b64, meta = self._snap_and_encode(
y, seconds=chunk_secs, target_sr=self.params.target_sr, bars=self.params.bars_per_chunk
)
meta["xfade_seconds"] = xfade
# 6) Publish
with self._lock:
self.idx += 1
self.outbox.append(JamChunk(index=self.idx, audio_base64=b64, metadata=meta))
if len(self.outbox) > 10:
cutoff = self._last_delivered_index - 5
self.outbox = [ch for ch in self.outbox if ch.index > cutoff]
print(f"β
Completed chunk {self.idx}")
print("π JamWorker stopped")
|