File size: 24,071 Bytes
d1afbc8
 
 
 
 
184daaa
8cedcd0
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c188e5c
 
 
 
 
d1afbc8
 
c188e5c
d1afbc8
 
 
c188e5c
eb5d99b
 
 
d1afbc8
 
c188e5c
 
d1afbc8
 
 
c188e5c
d1afbc8
 
 
 
 
8cedcd0
d1afbc8
 
8cedcd0
d1afbc8
8cedcd0
 
 
d1afbc8
 
8cedcd0
d1afbc8
 
8cedcd0
d1afbc8
8cedcd0
 
d41a575
8cedcd0
d1afbc8
 
8cedcd0
 
d1afbc8
 
8cedcd0
 
 
 
 
 
 
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184daaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cedcd0
 
 
 
 
 
 
 
 
 
 
 
 
d41a575
8cedcd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9330a3
8cedcd0
a9330a3
 
 
 
 
 
 
d41a575
a9330a3
 
 
 
8cedcd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9330a3
 
8cedcd0
 
a9330a3
8cedcd0
bf8ae4c
a9330a3
8cedcd0
bf8ae4c
8cedcd0
 
bf8ae4c
 
 
8cedcd0
a9330a3
 
 
bf8ae4c
 
8cedcd0
bf8ae4c
 
 
 
 
 
8cedcd0
bf8ae4c
 
8cedcd0
bf8ae4c
8cedcd0
 
a9330a3
bf8ae4c
 
 
 
 
a9330a3
 
 
bf8ae4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cedcd0
 
 
bf8ae4c
8cedcd0
6460c54
 
 
 
 
 
 
 
 
8cedcd0
783cbeb
 
 
 
 
 
 
 
 
 
 
 
8cedcd0
 
783cbeb
8cedcd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1afbc8
eb5d99b
 
1b98b73
eb5d99b
 
 
 
 
 
 
 
 
 
 
 
1b98b73
9fb3c06
eb5d99b
c4dc2c2
 
9fb3c06
 
 
 
 
 
 
eb5d99b
 
c4dc2c2
eb5d99b
9fb3c06
c4dc2c2
 
eb5d99b
c4dc2c2
 
 
eb5d99b
 
9fb3c06
eb5d99b
 
 
9fb3c06
eb5d99b
9fb3c06
eb5d99b
9fb3c06
 
 
eb5d99b
9fb3c06
 
 
 
 
 
 
 
 
 
 
 
 
c4dc2c2
9fb3c06
eb5d99b
c4dc2c2
 
184daaa
eb5d99b
184daaa
d1afbc8
1b98b73
eb5d99b
1b98b73
 
eb5d99b
 
 
 
 
 
 
 
1b98b73
eb5d99b
 
1b98b73
 
 
 
eb5d99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b98b73
eb5d99b
 
 
 
1b98b73
 
 
 
d1afbc8
1b98b73
 
 
eb5d99b
1b98b73
eb5d99b
1b98b73
eb5d99b
d1afbc8
eb5d99b
1b98b73
eb5d99b
 
1b98b73
 
 
d1afbc8
eb5d99b
d1afbc8
1b98b73
c4dc2c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
# jam_worker.py - SIMPLE FIX VERSION
import threading, time, base64, io, uuid
from dataclasses import dataclass, field
import numpy as np
import soundfile as sf
from magenta_rt import audio as au
from threading import RLock
from utils import (
    match_loudness_to_reference, stitch_generated, hard_trim_seconds,
    apply_micro_fades, make_bar_aligned_context, take_bar_aligned_tail,
    resample_and_snap, wav_bytes_base64
)

@dataclass
class JamParams:
    bpm: float
    beats_per_bar: int
    bars_per_chunk: int
    target_sr: int
    loudness_mode: str = "auto"
    headroom_db: float = 1.0
    style_vec: np.ndarray | None = None
    ref_loop: any = None
    combined_loop: any = None
    guidance_weight: float = 1.1
    temperature: float = 1.1
    topk: int = 40

@dataclass
class JamChunk:
    index: int
    audio_base64: str
    metadata: dict

class JamWorker(threading.Thread):
    def __init__(self, mrt, params: JamParams):
        super().__init__(daemon=True)
        self.mrt = mrt
        self.params = params
        self.state = mrt.init_state()

        # βœ… init synchronization + placeholders FIRST
        self._lock = threading.Lock()
        self._original_context_tokens = None   # so hasattr checks are cheap/clear

        if params.combined_loop is not None:
            self._setup_context_from_combined_loop()

        self.idx = 0
        self.outbox: list[JamChunk] = []
        self._stop_event = threading.Event()

        self._stream = None
        self._next_emit_start = 0

        # NEW: Track delivery state
        self._last_delivered_index = 0
        self._max_buffer_ahead = 5

        # Timing info
        self.last_chunk_started_at = None
        self.last_chunk_completed_at = None


    def _setup_context_from_combined_loop(self):
        """Set up MRT context tokens from the combined loop audio"""
        try:
            from utils import make_bar_aligned_context, take_bar_aligned_tail

            codec_fps = float(self.mrt.codec.frame_rate)
            ctx_seconds = float(self.mrt.config.context_length_frames) / codec_fps

            loop_for_context = take_bar_aligned_tail(
                self.params.combined_loop,
                self.params.bpm,
                self.params.beats_per_bar,
                ctx_seconds
            )

            tokens_full = self.mrt.codec.encode(loop_for_context).astype(np.int32)
            tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth]

            context_tokens = make_bar_aligned_context(
                tokens,
                bpm=self.params.bpm,
                fps=float(self.mrt.codec.frame_rate),  # keep fractional fps
                ctx_frames=self.mrt.config.context_length_frames,
                beats_per_bar=self.params.beats_per_bar
            )

            # Install fresh context
            self.state.context_tokens = context_tokens
            print(f"βœ… JamWorker: Set up fresh context from combined loop")

            # NEW: keep a copy of the *original* context tokens for future splice-reseed
            # (guard so we only set this once, at jam start)
            with self._lock:
                if not hasattr(self, "_original_context_tokens") or self._original_context_tokens is None:
                    self._original_context_tokens = np.copy(context_tokens)  # shape: [T, depth]

        except Exception as e:
            print(f"❌ Failed to setup context from combined loop: {e}")

    def stop(self):
        self._stop_event.set()

    def update_knobs(self, *, guidance_weight=None, temperature=None, topk=None):
        with self._lock:
            if guidance_weight is not None: self.params.guidance_weight = float(guidance_weight)
            if temperature is not None:     self.params.temperature     = float(temperature)
            if topk is not None:            self.params.topk            = int(topk)

    def get_next_chunk(self) -> JamChunk | None:
        """Get the next sequential chunk (blocks/waits if not ready)"""
        target_index = self._last_delivered_index + 1
        
        # Wait for the target chunk to be ready (with timeout)
        max_wait = 30.0  # seconds
        start_time = time.time()
        
        while time.time() - start_time < max_wait and not self._stop_event.is_set():
            with self._lock:
                # Look for the exact chunk we need
                for chunk in self.outbox:
                    if chunk.index == target_index:
                        self._last_delivered_index = target_index
                        print(f"πŸ“¦ Delivered chunk {target_index}")
                        return chunk
            
            # Not ready yet, wait a bit
            time.sleep(0.1)
        
        # Timeout or stopped
        return None

    def mark_chunk_consumed(self, chunk_index: int):
        """Mark a chunk as consumed by the frontend"""
        with self._lock:
            self._last_delivered_index = max(self._last_delivered_index, chunk_index)
            print(f"βœ… Chunk {chunk_index} consumed")

    def _should_generate_next_chunk(self) -> bool:
        """Check if we should generate the next chunk (don't get too far ahead)"""
        with self._lock:
            # Don't generate if we're already too far ahead
            if self.idx > self._last_delivered_index + self._max_buffer_ahead:
                return False
            return True

    def _seconds_per_bar(self) -> float:
        return self.params.beats_per_bar * (60.0 / self.params.bpm)

    def _snap_and_encode(self, y, seconds, target_sr, bars):
        cur_sr = int(self.mrt.sample_rate)
        x = y.samples if y.samples.ndim == 2 else y.samples[:, None]
        x = resample_and_snap(x, cur_sr=cur_sr, target_sr=target_sr, seconds=seconds)
        b64, total_samples, channels = wav_bytes_base64(x, target_sr)
        meta = {
            "bpm": int(round(self.params.bpm)),
            "bars": int(bars),
            "beats_per_bar": int(self.params.beats_per_bar),
            "sample_rate": int(target_sr),
            "channels": channels,
            "total_samples": total_samples,
            "seconds_per_bar": self._seconds_per_bar(),
            "loop_duration_seconds": bars * self._seconds_per_bar(),
            "guidance_weight": self.params.guidance_weight,
            "temperature": self.params.temperature,
            "topk": self.params.topk,
        }
        return b64, meta

    def _append_model_chunk_to_stream(self, wav):
        """Incrementally append a model chunk with equal-power crossfade."""
        xfade_s = float(self.mrt.config.crossfade_length)
        sr = int(self.mrt.sample_rate)
        xfade_n = int(round(xfade_s * sr))

        s = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None]

        if getattr(self, "_stream", None) is None:
            # First chunk: drop model pre-roll (xfade head)
            if s.shape[0] > xfade_n:
                self._stream = s[xfade_n:].astype(np.float32, copy=True)
            else:
                self._stream = np.zeros((0, s.shape[1]), dtype=np.float32)
            self._next_emit_start = 0  # pointer into _stream (model SR samples)
            return

        # Crossfade last xfade_n samples of _stream with head of new s
        if s.shape[0] <= xfade_n or self._stream.shape[0] < xfade_n:
            # Degenerate safeguard
            self._stream = np.concatenate([self._stream, s], axis=0)
            return

        tail = self._stream[-xfade_n:]
        head = s[:xfade_n]

        # Equal-power envelopes
        t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)[:, None]
        eq_in, eq_out = np.sin(t), np.cos(t)
        mixed = tail * eq_out + head * eq_in

        self._stream = np.concatenate([self._stream[:-xfade_n], mixed, s[xfade_n:]], axis=0)

    def reseed_from_waveform(self, wav):
        # 1) Re-init state
        new_state = self.mrt.init_state()

        # 2) Build bar-aligned context tokens from provided audio
        codec_fps   = float(self.mrt.codec.frame_rate)
        ctx_seconds = float(self.mrt.config.context_length_frames) / codec_fps
        from utils import take_bar_aligned_tail, make_bar_aligned_context

        tail = take_bar_aligned_tail(wav, self.params.bpm, self.params.beats_per_bar, ctx_seconds)
        tokens_full = self.mrt.codec.encode(tail).astype(np.int32)
        tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth]
        context_tokens = make_bar_aligned_context(tokens,
            bpm=self.params.bpm, fps=float(self.mrt.codec.frame_rate),
            ctx_frames=self.mrt.config.context_length_frames,
            beats_per_bar=self.params.beats_per_bar
        )
        new_state.context_tokens = context_tokens
        self.state = new_state
        self._prepare_stream_for_reseed_handoff()

    def _frames_per_bar(self) -> int:
        # codec frame-rate (frames/s) -> frames per musical bar
        fps = float(self.mrt.codec.frame_rate)
        sec_per_bar = (60.0 / float(self.params.bpm)) * float(self.params.beats_per_bar)
        return int(round(fps * sec_per_bar))

    def _ctx_frames(self) -> int:
        # how many codec frames fit in the model’s conditioning window
        return int(self.mrt.config.context_length_frames)

    def _make_recent_tokens_from_wave(self, wav) -> np.ndarray:
        """
        Encode waveform and produce a BAR-ALIGNED context token window.
        """
        tokens_full = self.mrt.codec.encode(wav).astype(np.int32)           # [T, rvq_total]
        tokens      = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth]

        from utils import make_bar_aligned_context
        ctx = make_bar_aligned_context(
            tokens,
            bpm=self.params.bpm,
            fps=float(self.mrt.codec.frame_rate),  # keep fractional fps
            ctx_frames=self.mrt.config.context_length_frames,
            beats_per_bar=self.params.beats_per_bar
        )
        return ctx

    def _bar_aligned_tail(self, tokens: np.ndarray, bars: float) -> np.ndarray:
        """
        Take a tail slice that is an integer number of codec frames corresponding to `bars`.
        We round to nearest frame to stay phase-consistent with codec grid.
        """
        frames_per_bar = self._frames_per_bar()
        want = max(frames_per_bar * int(round(bars)), 0)
        if want == 0:
            return tokens[:0]  # empty
        if tokens.shape[0] <= want:
            return tokens
        return tokens[-want:]

    def _splice_context(self, original_tokens: np.ndarray, recent_tokens: np.ndarray,
                    anchor_bars: float) -> np.ndarray:
        import math
        ctx_frames = self._ctx_frames()
        depth = original_tokens.shape[1]
        frames_per_bar = self._frames_per_bar()

        # 1) Anchor tail (whole bars)
        anchor = self._bar_aligned_tail(original_tokens, math.floor(anchor_bars))

        # 2) Fill remainder with recent (prefer whole bars)
        a = anchor.shape[0]
        remain = max(ctx_frames - a, 0)

        recent = recent_tokens[:0]
        used_recent = 0  # frames taken from the END of recent_tokens
        if remain > 0:
            bars_fit = remain // frames_per_bar
            if bars_fit >= 1:
                want_recent_frames = int(bars_fit * frames_per_bar)
                used_recent = min(want_recent_frames, recent_tokens.shape[0])
                recent = recent_tokens[-used_recent:] if used_recent > 0 else recent_tokens[:0]
            else:
                used_recent = min(remain, recent_tokens.shape[0])
                recent = recent_tokens[-used_recent:] if used_recent > 0 else recent_tokens[:0]

        # 3) Concat in order [anchor, recent]
        if anchor.size or recent.size:
            out = np.concatenate([anchor, recent], axis=0)
        else:
            # fallback: just take the last ctx window from recent
            out = recent_tokens[-ctx_frames:]

        # 4) Trim if we overshot
        if out.shape[0] > ctx_frames:
            out = out[-ctx_frames:]

        # 5) Snap the **END** to the nearest LOWER bar boundary
        if frames_per_bar > 0:
            max_bar_aligned = (out.shape[0] // frames_per_bar) * frames_per_bar
        else:
            max_bar_aligned = out.shape[0]
        if max_bar_aligned > 0 and out.shape[0] != max_bar_aligned:
            out = out[-max_bar_aligned:]

        # 6) Left-fill to reach ctx_frames **without moving the END**
        deficit = ctx_frames - out.shape[0]
        if deficit > 0:
            left_parts = []

            # Prefer frames immediately BEFORE the region we used from 'recent_tokens'
            if used_recent < recent_tokens.shape[0]:
                take = min(deficit, recent_tokens.shape[0] - used_recent)
                if used_recent > 0:
                    left_parts.append(recent_tokens[-(used_recent + take) : -used_recent])
                else:
                    left_parts.append(recent_tokens[-take:])

            # Then take frames immediately BEFORE the 'anchor' in original_tokens
            if sum(p.shape[0] for p in left_parts) < deficit and anchor.shape[0] > 0:
                need = deficit - sum(p.shape[0] for p in left_parts)
                a_len = anchor.shape[0]
                avail = max(original_tokens.shape[0] - a_len, 0)
                take2 = min(need, avail)
                if take2 > 0:
                    left_parts.append(original_tokens[-(a_len + take2) : -a_len])

            # Still short? tile from what's available
            have = sum(p.shape[0] for p in left_parts)
            if have < deficit:
                base = out if out.shape[0] > 0 else (recent_tokens if recent_tokens.shape[0] > 0 else original_tokens)
                reps = int(np.ceil((deficit - have) / max(1, base.shape[0])))
                left_parts.append(np.tile(base, (reps, 1))[: (deficit - have)])

            left = np.concatenate(left_parts, axis=0)
            out = np.concatenate([left[-deficit:], out], axis=0)

        # 7) Final guard to exact length
        if out.shape[0] > ctx_frames:
            out = out[-ctx_frames:]
        elif out.shape[0] < ctx_frames:
            reps = int(np.ceil(ctx_frames / max(1, out.shape[0])))
            out = np.tile(out, (reps, 1))[-ctx_frames:]

        # 8) Depth guard
        if out.shape[1] != depth:
            out = out[:, :depth]
        return out

    
    def _realign_emit_pointer_to_bar(self, sr_model: int):
        """Advance _next_emit_start to the next bar boundary in model-sample space."""
        bar_samps = int(round(self._seconds_per_bar() * sr_model))
        if bar_samps <= 0:
            return
        phase = self._next_emit_start % bar_samps
        if phase != 0:
            self._next_emit_start += (bar_samps - phase)
    
    def _prepare_stream_for_reseed_handoff(self):
        # OLD: keep crossfade tail -> causes phase offset
        # sr = int(self.mrt.sample_rate)
        # xfade_s = float(self.mrt.config.crossfade_length)
        # xfade_n = int(round(xfade_s * sr))
        # if getattr(self, "_stream", None) is not None and self._stream.shape[0] > 0:
        #     tail = self._stream[-xfade_n:] if self._stream.shape[0] > xfade_n else self._stream
        #     self._stream = tail.copy()
        # else:
        #     self._stream = None

        # NEW: throw away the tail completely; start fresh
        self._stream = None

        self._next_emit_start = 0
        self._needs_bar_realign = True

    def reseed_splice(self, recent_wav, anchor_bars: float):
        """
        Token-splice reseed:
        - original = the context we captured when the jam started
        - recent   = tokens from the provided recent waveform (usually Swift-combined mix)
        - anchor_bars controls how much of the original vibe we re-inject
        """
        with self._lock:
            if not hasattr(self, "_original_context_tokens") or self._original_context_tokens is None:
                # Fallback: if we somehow don’t have originals, treat current as originals
                self._original_context_tokens = np.copy(self.state.context_tokens)

            recent_tokens = self._make_recent_tokens_from_wave(recent_wav)          # [T, depth]
            new_ctx = self._splice_context(self._original_context_tokens, recent_tokens, anchor_bars)

            # install the new context window
            new_state = self.mrt.init_state()
            new_state.context_tokens = new_ctx
            self.state = new_state

            self._prepare_stream_for_reseed_handoff()

            # optional: ask streamer to drop an intro crossfade worth of audio right after reseed
            self._pending_drop_intro_bars = getattr(self, "_pending_drop_intro_bars", 0) + 1

    def run(self):
        """Main worker loop β€” generate into a continuous stream, then emit bar-aligned slices."""
        spb = self._seconds_per_bar()                     # seconds per bar
        chunk_secs = self.params.bars_per_chunk * spb
        xfade = float(self.mrt.config.crossfade_length)   # seconds
        sr = int(self.mrt.sample_rate)
        chunk_samps = int(round(chunk_secs * sr))

        def _need(first_chunk_extra=False):
            """How many more samples we still need in the stream to emit next slice."""
            have = 0 if getattr(self, "_stream", None) is None else self._stream.shape[0] - getattr(self, "_next_emit_start", 0)
            want = chunk_samps
            if first_chunk_extra:
                # reserve two bars extra so first-chunk onset alignment has material
                want += int(round(2 * spb * sr))
            return max(0, want - have)

        def _mono_env(x: np.ndarray, sr: int, win_ms: float = 10.0) -> np.ndarray:
            if x.ndim == 2: x = x.mean(axis=1)
            x = np.abs(x).astype(np.float32)
            w = max(1, int(round(win_ms * 1e-3 * sr)))
            if w > 1:
                kern = np.ones(w, dtype=np.float32) / float(w)
                x = np.convolve(x, kern, mode="same")
            d = np.diff(x, prepend=x[:1])
            d[d < 0] = 0.0
            return d

        def _estimate_first_offset_samples(ref_loop_wav, gen_head_wav, sr: int, spb: float) -> int:
            """Tempo-aware first-downbeat offset (positive => model late)."""
            try:
                max_ms = int(max(160.0, min(0.25 * spb * 1000.0, 450.0)))
                ref = ref_loop_wav if ref_loop_wav.sample_rate == sr else ref_loop_wav.resample(sr)
                n_bar = int(round(spb * sr))
                ref_tail = ref.samples[-n_bar:, :] if ref.samples.shape[0] >= n_bar else ref.samples
                gen_head = gen_head_wav.samples[: int(2 * n_bar), :]
                if ref_tail.size == 0 or gen_head.size == 0:
                    return 0

                # envelopes + z-score
                import numpy as np
                def _z(a):
                    m, s = float(a.mean()), float(a.std() or 1.0); return (a - m) / s
                e_ref = _z(_mono_env(ref_tail, sr)).astype(np.float32)
                e_gen = _z(_mono_env(gen_head, sr)).astype(np.float32)

                # upsample x4 for finer lag
                def _upsample(a, r=4):
                    n = len(a); grid = np.arange(n, dtype=np.float32)
                    fine = np.linspace(0, n - 1, num=n * r, dtype=np.float32)
                    return np.interp(fine, grid, a).astype(np.float32)
                up = 4
                e_ref_u, e_gen_u = _upsample(e_ref, up), _upsample(e_gen, up)

                max_lag_u = int(round((max_ms / 1000.0) * sr * up))
                seg = min(len(e_ref_u), len(e_gen_u))
                e_ref_u = e_ref_u[-seg:]
                pad = np.zeros(max_lag_u, dtype=np.float32)
                e_gen_u_pad = np.concatenate([pad, e_gen_u, pad])

                best_lag_u, best_score = 0, -1e9
                for lag_u in range(-max_lag_u, max_lag_u + 1):
                    start = max_lag_u + lag_u
                    b = e_gen_u_pad[start : start + seg]
                    denom = (np.linalg.norm(e_ref_u) * np.linalg.norm(b)) or 1.0
                    score = float(np.dot(e_ref_u, b) / denom)
                    if score > best_score:
                        best_score, best_lag_u = score, lag_u
                return int(round(best_lag_u / up))
            except Exception:
                return 0

        print("πŸš€ JamWorker started (bar-aligned streaming)…")

        while not self._stop_event.is_set():
            if not self._should_generate_next_chunk():
                time.sleep(0.25)
                continue

            # 1) Generate until we have enough material in the stream
            need = _need(first_chunk_extra=(self.idx == 0))
            while need > 0 and not self._stop_event.is_set():
                with self._lock:
                    style_vec = self.params.style_vec
                    self.mrt.guidance_weight = float(self.params.guidance_weight)
                    self.mrt.temperature     = float(self.params.temperature)
                    self.mrt.topk            = int(self.params.topk)
                wav, self.state = self.mrt.generate_chunk(state=self.state, style=style_vec)
                self._append_model_chunk_to_stream(wav)   # equal-power xfade into a persistent stream
                need = _need(first_chunk_extra=(self.idx == 0))

            if self._stop_event.is_set():
                break

            # 2) One-time: align the emit pointer to the groove
            if self.idx == 0 and self.params.combined_loop is not None:
                # Compare ref tail vs the head of what we're about to emit
                head_len = min(self._stream.shape[0] - self._next_emit_start, int(round(2 * spb * sr)))
                seg = self._stream[self._next_emit_start : self._next_emit_start + head_len]
                gen_head = au.Waveform(seg.astype(np.float32, copy=False), sr).as_stereo()
                offs = _estimate_first_offset_samples(self.params.combined_loop, gen_head, sr, spb)
                if offs != 0:
                    # positive => model late: skip some samples; negative => model early: "rewind" by padding
                    self._next_emit_start = max(0, self._next_emit_start + offs)
                    print(f"🎯 First-chunk offset compensation: {offs/sr:+.3f}s")
                # snap to next bar boundary
                self._realign_emit_pointer_to_bar(sr)

            # 3) Emit exactly bars_per_chunk Γ— spb from the stream
            start = self._next_emit_start
            end = start + chunk_samps
            if end > self._stream.shape[0]:
                # shouldn't happen often; generate a bit more and loop
                continue

            slice_ = self._stream[start:end]
            self._next_emit_start = end

            y = au.Waveform(slice_.astype(np.float32, copy=False), sr).as_stereo()

            # 4) Post-processing / loudness
            if self.idx == 0 and self.params.ref_loop is not None:
                y, _ = match_loudness_to_reference(
                    self.params.ref_loop, y,
                    method=self.params.loudness_mode,
                    headroom_db=self.params.headroom_db
                )
            else:
                apply_micro_fades(y, 3)

            # 5) Resample + exact-length snap + encode
            b64, meta = self._snap_and_encode(
                y, seconds=chunk_secs, target_sr=self.params.target_sr, bars=self.params.bars_per_chunk
            )
            meta["xfade_seconds"] = xfade

            # 6) Publish
            with self._lock:
                self.idx += 1
                self.outbox.append(JamChunk(index=self.idx, audio_base64=b64, metadata=meta))
                if len(self.outbox) > 10:
                    cutoff = self._last_delivered_index - 5
                    self.outbox = [ch for ch in self.outbox if ch.index > cutoff]

            print(f"βœ… Completed chunk {self.idx}")

        print("πŸ›‘ JamWorker stopped")