File size: 7,942 Bytes
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b98b73
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
1b98b73
 
 
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41a575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1afbc8
d41a575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1afbc8
d41a575
 
 
 
 
 
 
 
 
d1afbc8
d41a575
 
 
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# utils.py
from __future__ import annotations
import io, base64, math
from math import gcd
import numpy as np
import soundfile as sf
from scipy.signal import resample_poly

# Magenta RT audio types
from magenta_rt import audio as au

# Optional loudness
try:
    import pyloudnorm as pyln
    _HAS_LOUDNORM = True
except Exception:
    _HAS_LOUDNORM = False


# ---------- Loudness ----------
def _measure_lufs(wav: au.Waveform) -> float:
    meter = pyln.Meter(wav.sample_rate)  # BS.1770-4
    return float(meter.integrated_loudness(wav.samples))

def _rms(x: np.ndarray) -> float:
    if x.size == 0: return 0.0
    return float(np.sqrt(np.mean(x**2)))

def match_loudness_to_reference(
    ref: au.Waveform,
    target: au.Waveform,
    method: str = "auto",   # "auto"|"lufs"|"rms"|"none"
    headroom_db: float = 1.0
) -> tuple[au.Waveform, dict]:
    stats = {"method": method, "applied_gain_db": 0.0}
    if method == "none":
        return target, stats

    if method == "auto":
        method = "lufs" if _HAS_LOUDNORM else "rms"

    if method == "lufs" and _HAS_LOUDNORM:
        L_ref = _measure_lufs(ref)
        L_tgt = _measure_lufs(target)
        delta_db = L_ref - L_tgt
        gain = 10.0 ** (delta_db / 20.0)
        y = target.samples.astype(np.float32) * gain
        stats.update({"ref_lufs": L_ref, "tgt_lufs_before": L_tgt, "applied_gain_db": delta_db})
    else:
        ra = _rms(ref.samples)
        rb = _rms(target.samples)
        if rb <= 1e-12:
            return target, stats
        gain = ra / rb
        y = target.samples.astype(np.float32) * gain
        stats.update({"ref_rms": ra, "tgt_rms_before": rb, "applied_gain_db": 20*np.log10(max(gain,1e-12))})

    # simple peak “limiter” to keep headroom
    limit = 10 ** (-headroom_db / 20.0)   # e.g., -1 dBFS
    peak = float(np.max(np.abs(y))) if y.size else 0.0
    if peak > limit:
        y *= (limit / peak)
        stats["post_peak_limited"] = True
    else:
        stats["post_peak_limited"] = False

    target.samples = y.astype(np.float32)
    return target, stats


# ---------- Stitch / fades / trims ----------
def stitch_generated(chunks, sr: int, xfade_s: float, drop_first_pre_roll: bool = True):
    if not chunks:
        raise ValueError("no chunks")
    xfade_n = int(round(xfade_s * sr))
    if xfade_n <= 0:
        return au.Waveform(np.concatenate([c.samples for c in chunks], axis=0), sr)

    t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)
    eq_in, eq_out = np.sin(t)[:, None], np.cos(t)[:, None]

    first = chunks[0].samples
    if first.shape[0] < xfade_n:
        raise ValueError("chunk shorter than crossfade prefix")

    # 🔧 key change:
    out = first[xfade_n:].copy() if drop_first_pre_roll else first.copy()

    for i in range(1, len(chunks)):
        cur = chunks[i].samples
        if cur.shape[0] < xfade_n:
            continue
        head, tail = cur[:xfade_n], cur[xfade_n:]
        mixed = out[-xfade_n:] * eq_out + head * eq_in
        out = np.concatenate([out[:-xfade_n], mixed, tail], axis=0)

    return au.Waveform(out, sr)

def hard_trim_seconds(wav: au.Waveform, seconds: float) -> au.Waveform:
    n = int(round(seconds * wav.sample_rate))
    return au.Waveform(wav.samples[:n], wav.sample_rate)

def apply_micro_fades(wav: au.Waveform, ms: int = 5) -> None:
    n = int(wav.sample_rate * ms / 1000.0)
    if n > 0 and wav.samples.shape[0] > 2*n:
        env = np.linspace(0.0, 1.0, n, dtype=np.float32)[:, None]
        wav.samples[:n]  *= env
        wav.samples[-n:] *= env[::-1]


# ---------- Token context helpers ----------
def make_bar_aligned_context(tokens, bpm, fps=25.0, ctx_frames=250, beats_per_bar=4):
    """
    Return a ctx_frames-long slice of `tokens` whose **end** lands on the nearest
    whole-bar boundary in codec-frame space, even when frames_per_bar is fractional.

    tokens: np.ndarray of shape (T, D) or (T,) where T = codec frames
    bpm: float
    fps: float (codec frames per second; keep this as float)
    ctx_frames: int (length of context window in codec frames)
    beats_per_bar: int
    """
 

    if tokens is None:
        raise ValueError("tokens is None")
    tokens = np.asarray(tokens)
    if tokens.ndim == 1:
        tokens = tokens[:, None]  # promote to (T, 1) for uniform tiling

    T = tokens.shape[0]
    if T == 0:
        return tokens

    fps = float(fps)
    frames_per_bar_f = (beats_per_bar * 60.0 / float(bpm)) * fps  # float frames per bar

    # Tile a little more than we need so we can always snap the END to a bar boundary
    reps = int(np.ceil((ctx_frames + T) / float(T))) + 1
    tiled = np.tile(tokens, (reps, 1))
    total = tiled.shape[0]

    # How many whole bars fit?
    k_bars = int(np.floor(total / frames_per_bar_f))
    if k_bars <= 0:
        # Fallback: just take the last ctx_frames
        window = tiled[-ctx_frames:]
        return window

    # Snap END index to the nearest integer frame at a whole-bar boundary
    end_idx = int(round(k_bars * frames_per_bar_f))
    end_idx = min(max(end_idx, ctx_frames), total)
    start_idx = end_idx - ctx_frames
    if start_idx < 0:
        start_idx = 0
        end_idx = ctx_frames

    window = tiled[start_idx:end_idx]

    # Guard against rare off-by-one due to rounding
    if window.shape[0] < ctx_frames:
        pad = np.tile(tokens, (int(np.ceil((ctx_frames - window.shape[0]) / T)), 1))
        window = np.vstack([window, pad])[:ctx_frames]
    elif window.shape[0] > ctx_frames:
        window = window[-ctx_frames:]

    return window


def take_bar_aligned_tail(
    wav: au.Waveform,
    bpm: float,
    beats_per_bar: int,
    ctx_seconds: float,
    max_bars=None
) -> au.Waveform:
    """
    Take a tail whose length is an integer number of bars, with the END aligned
    to a bar boundary. Uses ceil for bars_needed so we never under-fill the context.
    """
    import math

    # seconds per bar
    spb = (60.0 / float(bpm)) * float(beats_per_bar)

    # Pick enough whole bars to cover ctx_seconds (avoid underfilling on round-down).
    # The small epsilon avoids an extra bar due to FP jitter when ctx_seconds ~= k * spb.
    eps = 1e-9
    bars_needed = max(1, int(math.ceil((float(ctx_seconds) - eps) / spb)))

    if max_bars is not None:
        bars_needed = min(bars_needed, int(max_bars))

    # Convert bars -> samples (do rounding once at the end for stability)
    samples_per_bar_f = spb * float(wav.sample_rate)
    n = int(round(bars_needed * samples_per_bar_f))

    total = int(wav.samples.shape[0])
    if n >= total:
        # Not enough audio to take that many bars—return as-is (current behavior).
        return wav

    start = total - n
    return au.Waveform(wav.samples[start:], wav.sample_rate)


# ---------- SR normalize + snap ----------
def resample_and_snap(x: np.ndarray, cur_sr: int, target_sr: int, seconds: float) -> np.ndarray:
    """
    x: np.ndarray shape (S, C), float32
    Returns: exact-length array (round(seconds*target_sr), C)
    """
    if x.ndim == 1:
        x = x[:, None]
    if cur_sr != target_sr:
        g = gcd(cur_sr, target_sr)
        up, down = target_sr // g, cur_sr // g
        x = resample_poly(x, up, down, axis=0)

    expected_len = int(round(seconds * target_sr))
    if x.shape[0] < expected_len:
        pad = np.zeros((expected_len - x.shape[0], x.shape[1]), dtype=x.dtype)
        x = np.vstack([x, pad])
    elif x.shape[0] > expected_len:
        x = x[:expected_len, :]
    return x.astype(np.float32, copy=False)


# ---------- WAV encode ----------
def wav_bytes_base64(x: np.ndarray, sr: int) -> tuple[str, int, int]:
    """
    x: np.ndarray shape (S, C)
    returns: (base64_wav, total_samples, channels)
    """
    buf = io.BytesIO()
    sf.write(buf, x, sr, subtype="FLOAT", format="WAV")
    buf.seek(0)
    b64 = base64.b64encode(buf.read()).decode("utf-8")
    return b64, int(x.shape[0]), int(x.shape[1])