Spaces:
Running
Running
# jam_worker.py - SIMPLE FIX VERSION | |
import threading, time, base64, io, uuid | |
from dataclasses import dataclass, field | |
import numpy as np | |
import soundfile as sf | |
from magenta_rt import audio as au | |
from threading import RLock | |
from utils import ( | |
match_loudness_to_reference, stitch_generated, hard_trim_seconds, | |
apply_micro_fades, make_bar_aligned_context, take_bar_aligned_tail, | |
resample_and_snap, wav_bytes_base64 | |
) | |
class JamParams: | |
bpm: float | |
beats_per_bar: int | |
bars_per_chunk: int | |
target_sr: int | |
loudness_mode: str = "auto" | |
headroom_db: float = 1.0 | |
style_vec: np.ndarray | None = None | |
ref_loop: any = None | |
combined_loop: any = None | |
guidance_weight: float = 1.1 | |
temperature: float = 1.1 | |
topk: int = 40 | |
class JamChunk: | |
index: int | |
audio_base64: str | |
metadata: dict | |
class JamWorker(threading.Thread): | |
def __init__(self, mrt, params: JamParams): | |
super().__init__(daemon=True) | |
self.mrt = mrt | |
self.params = params | |
self.state = mrt.init_state() | |
# β init synchronization + placeholders FIRST | |
self._lock = threading.Lock() | |
self._original_context_tokens = None # so hasattr checks are cheap/clear | |
if params.combined_loop is not None: | |
self._setup_context_from_combined_loop() | |
self.idx = 0 | |
self.outbox: list[JamChunk] = [] | |
self._stop_event = threading.Event() | |
# NEW: Track delivery state | |
self._last_delivered_index = 0 | |
self._max_buffer_ahead = 5 | |
# Timing info | |
self.last_chunk_started_at = None | |
self.last_chunk_completed_at = None | |
def _setup_context_from_combined_loop(self): | |
"""Set up MRT context tokens from the combined loop audio""" | |
try: | |
from utils import make_bar_aligned_context, take_bar_aligned_tail | |
codec_fps = float(self.mrt.codec.frame_rate) | |
ctx_seconds = float(self.mrt.config.context_length_frames) / codec_fps | |
loop_for_context = take_bar_aligned_tail( | |
self.params.combined_loop, | |
self.params.bpm, | |
self.params.beats_per_bar, | |
ctx_seconds | |
) | |
tokens_full = self.mrt.codec.encode(loop_for_context).astype(np.int32) | |
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth] | |
context_tokens = make_bar_aligned_context( | |
tokens, | |
bpm=self.params.bpm, | |
fps=int(self.mrt.codec.frame_rate), | |
ctx_frames=self.mrt.config.context_length_frames, | |
beats_per_bar=self.params.beats_per_bar | |
) | |
# Install fresh context | |
self.state.context_tokens = context_tokens | |
print(f"β JamWorker: Set up fresh context from combined loop") | |
# NEW: keep a copy of the *original* context tokens for future splice-reseed | |
# (guard so we only set this once, at jam start) | |
with self._lock: | |
if not hasattr(self, "_original_context_tokens") or self._original_context_tokens is None: | |
self._original_context_tokens = np.copy(context_tokens) # shape: [T, depth] | |
except Exception as e: | |
print(f"β Failed to setup context from combined loop: {e}") | |
def stop(self): | |
self._stop_event.set() | |
def update_knobs(self, *, guidance_weight=None, temperature=None, topk=None): | |
with self._lock: | |
if guidance_weight is not None: self.params.guidance_weight = float(guidance_weight) | |
if temperature is not None: self.params.temperature = float(temperature) | |
if topk is not None: self.params.topk = int(topk) | |
def get_next_chunk(self) -> JamChunk | None: | |
"""Get the next sequential chunk (blocks/waits if not ready)""" | |
target_index = self._last_delivered_index + 1 | |
# Wait for the target chunk to be ready (with timeout) | |
max_wait = 30.0 # seconds | |
start_time = time.time() | |
while time.time() - start_time < max_wait and not self._stop_event.is_set(): | |
with self._lock: | |
# Look for the exact chunk we need | |
for chunk in self.outbox: | |
if chunk.index == target_index: | |
self._last_delivered_index = target_index | |
print(f"π¦ Delivered chunk {target_index}") | |
return chunk | |
# Not ready yet, wait a bit | |
time.sleep(0.1) | |
# Timeout or stopped | |
return None | |
def mark_chunk_consumed(self, chunk_index: int): | |
"""Mark a chunk as consumed by the frontend""" | |
with self._lock: | |
self._last_delivered_index = max(self._last_delivered_index, chunk_index) | |
print(f"β Chunk {chunk_index} consumed") | |
def _should_generate_next_chunk(self) -> bool: | |
"""Check if we should generate the next chunk (don't get too far ahead)""" | |
with self._lock: | |
# Don't generate if we're already too far ahead | |
if self.idx > self._last_delivered_index + self._max_buffer_ahead: | |
return False | |
return True | |
def _seconds_per_bar(self) -> float: | |
return self.params.beats_per_bar * (60.0 / self.params.bpm) | |
def _snap_and_encode(self, y, seconds, target_sr, bars): | |
cur_sr = int(self.mrt.sample_rate) | |
x = y.samples if y.samples.ndim == 2 else y.samples[:, None] | |
x = resample_and_snap(x, cur_sr=cur_sr, target_sr=target_sr, seconds=seconds) | |
b64, total_samples, channels = wav_bytes_base64(x, target_sr) | |
meta = { | |
"bpm": int(round(self.params.bpm)), | |
"bars": int(bars), | |
"beats_per_bar": int(self.params.beats_per_bar), | |
"sample_rate": int(target_sr), | |
"channels": channels, | |
"total_samples": total_samples, | |
"seconds_per_bar": self._seconds_per_bar(), | |
"loop_duration_seconds": bars * self._seconds_per_bar(), | |
"guidance_weight": self.params.guidance_weight, | |
"temperature": self.params.temperature, | |
"topk": self.params.topk, | |
} | |
return b64, meta | |
def _append_model_chunk_to_stream(self, wav): | |
"""Incrementally append a model chunk with equal-power crossfade.""" | |
xfade_s = float(self.mrt.config.crossfade_length) | |
sr = int(self.mrt.sample_rate) | |
xfade_n = int(round(xfade_s * sr)) | |
s = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None] | |
if getattr(self, "_stream", None) is None: | |
# First chunk: drop model pre-roll (xfade head) | |
if s.shape[0] > xfade_n: | |
self._stream = s[xfade_n:].astype(np.float32, copy=True) | |
else: | |
self._stream = np.zeros((0, s.shape[1]), dtype=np.float32) | |
self._next_emit_start = 0 # pointer into _stream (model SR samples) | |
return | |
# Crossfade last xfade_n samples of _stream with head of new s | |
if s.shape[0] <= xfade_n or self._stream.shape[0] < xfade_n: | |
# Degenerate safeguard | |
self._stream = np.concatenate([self._stream, s], axis=0) | |
return | |
tail = self._stream[-xfade_n:] | |
head = s[:xfade_n] | |
# Equal-power envelopes | |
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)[:, None] | |
eq_in, eq_out = np.sin(t), np.cos(t) | |
mixed = tail * eq_out + head * eq_in | |
self._stream = np.concatenate([self._stream[:-xfade_n], mixed, s[xfade_n:]], axis=0) | |
def reseed_from_waveform(self, wav): | |
# 1) Re-init state | |
new_state = self.mrt.init_state() | |
# 2) Build bar-aligned context tokens from provided audio | |
codec_fps = float(self.mrt.codec.frame_rate) | |
ctx_seconds = float(self.mrt.config.context_length_frames) / codec_fps | |
from utils import take_bar_aligned_tail, make_bar_aligned_context | |
tail = take_bar_aligned_tail(wav, self.params.bpm, self.params.beats_per_bar, ctx_seconds) | |
tokens_full = self.mrt.codec.encode(tail).astype(np.int32) | |
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth] | |
context_tokens = make_bar_aligned_context(tokens, | |
bpm=self.params.bpm, fps=int(self.mrt.codec.frame_rate), | |
ctx_frames=self.mrt.config.context_length_frames, | |
beats_per_bar=self.params.beats_per_bar | |
) | |
new_state.context_tokens = context_tokens | |
self.state = new_state | |
self._prepare_stream_for_reseed_handoff() | |
def _frames_per_bar(self) -> int: | |
# codec frame-rate (frames/s) -> frames per musical bar | |
fps = float(self.mrt.codec.frame_rate) | |
sec_per_bar = (60.0 / float(self.params.bpm)) * float(self.params.beats_per_bar) | |
return int(round(fps * sec_per_bar)) | |
def _ctx_frames(self) -> int: | |
# how many codec frames fit in the modelβs conditioning window | |
return int(self.mrt.config.context_length_frames) | |
def _make_recent_tokens_from_wave(self, wav) -> np.ndarray: | |
""" | |
Encode waveform and produce a BAR-ALIGNED context token window. | |
""" | |
tokens_full = self.mrt.codec.encode(wav).astype(np.int32) # [T, rvq_total] | |
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth] | |
from utils import make_bar_aligned_context | |
ctx = make_bar_aligned_context( | |
tokens, | |
bpm=self.params.bpm, | |
fps=int(self.mrt.codec.frame_rate), | |
ctx_frames=self.mrt.config.context_length_frames, | |
beats_per_bar=self.params.beats_per_bar | |
) | |
return ctx | |
def _bar_aligned_tail(self, tokens: np.ndarray, bars: float) -> np.ndarray: | |
""" | |
Take a tail slice that is an integer number of codec frames corresponding to `bars`. | |
We round to nearest frame to stay phase-consistent with codec grid. | |
""" | |
frames_per_bar = self._frames_per_bar() | |
want = max(frames_per_bar * int(round(bars)), 0) | |
if want == 0: | |
return tokens[:0] # empty | |
if tokens.shape[0] <= want: | |
return tokens | |
return tokens[-want:] | |
def _splice_context(self, original_tokens: np.ndarray, recent_tokens: np.ndarray, | |
anchor_bars: float) -> np.ndarray: | |
import math | |
ctx_frames = self._ctx_frames() | |
depth = original_tokens.shape[1] | |
frames_per_bar = self._frames_per_bar() | |
# 1) Anchor tail | |
# Use floor, not round, to avoid grabbing an extra bar. | |
anchor = self._bar_aligned_tail(original_tokens, math.floor(anchor_bars)) | |
# 2) Fill remainder with recent (in whole bars when possible) | |
a = anchor.shape[0] | |
remain = max(ctx_frames - a, 0) | |
if remain > 0: | |
bars_fit = remain // frames_per_bar | |
if bars_fit >= 1: | |
want_recent_frames = int(bars_fit * frames_per_bar) | |
recent = recent_tokens[-want_recent_frames:] if recent_tokens.shape[0] > want_recent_frames else recent_tokens | |
else: | |
recent = recent_tokens[-remain:] if recent_tokens.shape[0] > remain else recent_tokens | |
else: | |
recent = recent_tokens[:0] | |
out = np.concatenate([anchor, recent], axis=0) if (anchor.size or recent.size) else recent_tokens[-ctx_frames:] | |
if out.shape[0] > ctx_frames: | |
out = out[-ctx_frames:] | |
# --- NEW: force total length to a whole number of bars | |
max_bar_aligned = (out.shape[0] // frames_per_bar) * frames_per_bar | |
if max_bar_aligned > 0 and out.shape[0] != max_bar_aligned: | |
out = out[-max_bar_aligned:] | |
if out.shape[1] != depth: | |
out = out[:, :depth] | |
return out | |
def _realign_emit_pointer_to_bar(self, sr_model: int): | |
"""Advance _next_emit_start to the next bar boundary in model-sample space.""" | |
bar_samps = int(round(self._seconds_per_bar() * sr_model)) | |
if bar_samps <= 0: | |
return | |
phase = self._next_emit_start % bar_samps | |
if phase != 0: | |
self._next_emit_start += (bar_samps - phase) | |
def _prepare_stream_for_reseed_handoff(self): | |
# OLD: keep crossfade tail -> causes phase offset | |
# sr = int(self.mrt.sample_rate) | |
# xfade_s = float(self.mrt.config.crossfade_length) | |
# xfade_n = int(round(xfade_s * sr)) | |
# if getattr(self, "_stream", None) is not None and self._stream.shape[0] > 0: | |
# tail = self._stream[-xfade_n:] if self._stream.shape[0] > xfade_n else self._stream | |
# self._stream = tail.copy() | |
# else: | |
# self._stream = None | |
# NEW: throw away the tail completely; start fresh | |
self._stream = None | |
self._next_emit_start = 0 | |
self._needs_bar_realign = True | |
def reseed_splice(self, recent_wav, anchor_bars: float): | |
""" | |
Token-splice reseed: | |
- original = the context we captured when the jam started | |
- recent = tokens from the provided recent waveform (usually Swift-combined mix) | |
- anchor_bars controls how much of the original vibe we re-inject | |
""" | |
with self._lock: | |
if not hasattr(self, "_original_context_tokens") or self._original_context_tokens is None: | |
# Fallback: if we somehow donβt have originals, treat current as originals | |
self._original_context_tokens = np.copy(self.state.context_tokens) | |
recent_tokens = self._make_recent_tokens_from_wave(recent_wav) # [T, depth] | |
new_ctx = self._splice_context(self._original_context_tokens, recent_tokens, anchor_bars) | |
# install the new context window | |
new_state = self.mrt.init_state() | |
new_state.context_tokens = new_ctx | |
self.state = new_state | |
self._prepare_stream_for_reseed_handoff() | |
# optional: ask streamer to drop an intro crossfade worth of audio right after reseed | |
self._pending_drop_intro_bars = getattr(self, "_pending_drop_intro_bars", 0) + 1 | |
def run(self): | |
"""Main worker loop - generate chunks continuously but don't get too far ahead""" | |
spb = self._seconds_per_bar() | |
chunk_secs = self.params.bars_per_chunk * spb | |
xfade = float(self.mrt.config.crossfade_length) # seconds | |
def _mono_env(x: np.ndarray, sr: int, win_ms: float = 10.0) -> np.ndarray: | |
"""Rectified moving-average envelope, then a simple onset-y novelty (half-wave diff).""" | |
if x.ndim == 2: | |
x = x.mean(axis=1) | |
x = np.abs(x).astype(np.float32) | |
w = max(1, int(round(win_ms * 1e-3 * sr))) | |
if w > 1: | |
kern = np.ones(w, dtype=np.float32) / float(w) | |
x = np.convolve(x, kern, mode="same") | |
# onset-ish novelty: positive first difference (half-wave) | |
d = np.diff(x, prepend=x[:1]) | |
d[d < 0] = 0.0 | |
return d | |
def _estimate_first_offset_samples(ref_loop_wav, gen_wav, sr: int, spb: float, max_ms: int = 180) -> int: | |
""" | |
Estimate how late/early the first downbeat is by correlating | |
the last bar of the reference vs the first two bars of the generated chunk. | |
Allows small +/- offsets; upsample envelopes x4 for sub-sample precision then round. | |
""" | |
try: | |
ref = ref_loop_wav if ref_loop_wav.sample_rate == sr else ref_loop_wav.resample(sr) | |
n_bar = int(round(spb * sr)) | |
ref_tail = ref.samples[-n_bar:, :] if ref.samples.shape[0] >= n_bar else ref.samples | |
gen_head = gen_wav.samples[: int(2 * n_bar), :] | |
if ref_tail.size == 0 or gen_head.size == 0: | |
return 0 | |
e_ref = _mono_env(ref_tail, sr) # length ~ n_bar | |
e_gen = _mono_env(gen_head, sr) # length ~ 2*n_bar | |
# z-score for scale invariance | |
def _z(a): | |
m, s = float(a.mean()), float(a.std() or 1.0) | |
return (a - m) / s | |
e_ref = _z(e_ref).astype(np.float32) | |
e_gen = _z(e_gen).astype(np.float32) | |
# Light upsampling for finer lag resolution (x4) | |
def _upsample(a, r=4): | |
n = len(a) | |
grid = np.arange(n, dtype=np.float32) | |
fine = np.linspace(0, n - 1, num=n * r, dtype=np.float32) | |
return np.interp(fine, grid, a).astype(np.float32) | |
up = 4 | |
e_ref_u = _upsample(e_ref, up) | |
e_gen_u = _upsample(e_gen, up) | |
# Correlate in a tight window | |
max_lag_u = int(round((max_ms / 1000.0) * sr * up)) | |
seg = min(len(e_ref_u), len(e_gen_u)) | |
e_ref_u = e_ref_u[-seg:] | |
# pad head so we can slide +/- lags | |
pad = np.zeros(max_lag_u, dtype=np.float32) | |
e_gen_u_pad = np.concatenate([pad, e_gen_u, pad]) | |
best_lag_u, best_score = 0, -1e9 | |
# allow tiny early OR late (negative = model early, positive = late) | |
for lag_u in range(-max_lag_u, max_lag_u + 1): | |
start = max_lag_u + lag_u | |
b = e_gen_u_pad[start : start + seg] | |
# normalized dot (already z-scored, but keep it consistent) | |
denom = (np.linalg.norm(e_ref_u) * np.linalg.norm(b)) or 1.0 | |
score = float(np.dot(e_ref_u, b) / denom) | |
if score > best_score: | |
best_score, best_lag_u = score, lag_u | |
# convert envelope-lag back to audio samples and round | |
lag_samples = int(round(best_lag_u / up)) | |
return lag_samples | |
except Exception: | |
return 0 | |
print("π JamWorker started with flow control...") | |
while not self._stop_event.is_set(): | |
# Donβt get too far ahead of the consumer | |
if not self._should_generate_next_chunk(): | |
print("βΈοΈ Buffer full, waiting for consumption...") | |
time.sleep(0.5) | |
continue | |
# Snapshot knobs + compute index | |
with self._lock: | |
style_vec = self.params.style_vec | |
self.mrt.guidance_weight = float(self.params.guidance_weight) | |
self.mrt.temperature = float(self.params.temperature) | |
self.mrt.topk = int(self.params.topk) | |
next_idx = self.idx + 1 | |
print(f"πΉ Generating chunk {next_idx}...") | |
self.last_chunk_started_at = time.time() | |
# ---- Generate enough model sub-chunks to yield *audible* chunk_secs ---- | |
# First sub-chunk contributes full L; subsequent contribute (L - xfade) | |
assembled = 0.0 | |
chunks = [] | |
while assembled < chunk_secs and not self._stop_event.is_set(): | |
wav, self.state = self.mrt.generate_chunk(state=self.state, style=style_vec) | |
chunks.append(wav) | |
L = wav.samples.shape[0] / float(self.mrt.sample_rate) | |
assembled += L if len(chunks) == 1 else max(0.0, L - xfade) | |
if self._stop_event.is_set(): | |
break | |
# ---- Stitch (utils drops the very first model pre-roll) & trim at model SR ---- | |
y = stitch_generated(chunks, self.mrt.sample_rate, xfade).as_stereo() | |
y = hard_trim_seconds(y, chunk_secs) | |
# ---- ONE-TIME: grid-align the very first jam chunk to kill the flam ---- | |
if next_idx == 1 and self.params.combined_loop is not None: | |
offset = _estimate_first_offset_samples( | |
self.params.combined_loop, y, int(self.mrt.sample_rate), spb, max_ms=180 # try 160β200 | |
) | |
if offset != 0: | |
# positive => model late: trim head; negative => model early: pad head (rare) | |
if offset > 0: | |
y.samples = y.samples[offset:, :] | |
else: | |
pad = np.zeros((abs(offset), y.samples.shape[1]), dtype=y.samples.dtype) | |
y.samples = np.concatenate([pad, y.samples], axis=0) | |
print(f"π― First-chunk offset compensation: {offset/self.mrt.sample_rate:+.3f}s") | |
y = hard_trim_seconds(y, chunk_secs) | |
# ---- Post-processing ---- | |
if next_idx == 1 and self.params.ref_loop is not None: | |
y, _ = match_loudness_to_reference( | |
self.params.ref_loop, y, | |
method=self.params.loudness_mode, | |
headroom_db=self.params.headroom_db | |
) | |
else: | |
apply_micro_fades(y, 3) | |
# ---- Resample + bar-snap + encode ---- | |
b64, meta = self._snap_and_encode( | |
y, | |
seconds=chunk_secs, | |
target_sr=self.params.target_sr, | |
bars=self.params.bars_per_chunk | |
) | |
meta["xfade_seconds"] = xfade # tiny hint for client if you want butter at chunk joins | |
# ---- Publish ---- | |
with self._lock: | |
self.idx = next_idx | |
self.outbox.append(JamChunk(index=next_idx, audio_base64=b64, metadata=meta)) | |
if len(self.outbox) > 10: | |
cutoff = self._last_delivered_index - 5 | |
self.outbox = [ch for ch in self.outbox if ch.index > cutoff] | |
self.last_chunk_completed_at = time.time() | |
print(f"β Completed chunk {next_idx}") | |
print("π JamWorker stopped") | |