magenta / app.py
thecollabagepatch's picture
use tail end of longer contexts
241e975
raw
history blame
13.8 kB
from magenta_rt import system, audio as au
import numpy as np
from fastapi import FastAPI, UploadFile, File, Form
import tempfile, io, base64, math, threading
from fastapi.middleware.cors import CORSMiddleware
from contextlib import contextmanager
import soundfile as sf
import numpy as np
from math import gcd
from scipy.signal import resample_poly
@contextmanager
def mrt_overrides(mrt, **kwargs):
"""Temporarily set attributes on MRT if they exist; restore after."""
old = {}
try:
for k, v in kwargs.items():
if hasattr(mrt, k):
old[k] = getattr(mrt, k)
setattr(mrt, k, v)
yield
finally:
for k, v in old.items():
setattr(mrt, k, v)
# loudness utils
try:
import pyloudnorm as pyln
_HAS_LOUDNORM = True
except Exception:
_HAS_LOUDNORM = False
def _measure_lufs(wav: au.Waveform) -> float:
# pyloudnorm expects float32/float64, shape (n,) or (n, ch)
meter = pyln.Meter(wav.sample_rate) # defaults to BS.1770-4
return float(meter.integrated_loudness(wav.samples))
def _rms(x: np.ndarray) -> float:
if x.size == 0: return 0.0
return float(np.sqrt(np.mean(x**2)))
def match_loudness_to_reference(
ref: au.Waveform,
target: au.Waveform,
method: str = "auto", # "auto"|"lufs"|"rms"|"none"
headroom_db: float = 1.0
) -> tuple[au.Waveform, dict]:
"""
Scales `target` to match `ref` loudness. Returns (adjusted_wave, stats).
"""
stats = {"method": method, "applied_gain_db": 0.0}
if method == "none":
return target, stats
if method == "auto":
method = "lufs" if _HAS_LOUDNORM else "rms"
if method == "lufs" and _HAS_LOUDNORM:
L_ref = _measure_lufs(ref)
L_tgt = _measure_lufs(target)
delta_db = L_ref - L_tgt
gain = 10.0 ** (delta_db / 20.0)
y = target.samples.astype(np.float32) * gain
stats.update({"ref_lufs": L_ref, "tgt_lufs_before": L_tgt, "applied_gain_db": delta_db})
else:
# RMS fallback
ra = _rms(ref.samples)
rb = _rms(target.samples)
if rb <= 1e-12:
return target, stats
gain = ra / rb
y = target.samples.astype(np.float32) * gain
stats.update({"ref_rms": ra, "tgt_rms_before": rb, "applied_gain_db": 20*np.log10(max(gain,1e-12))})
# simple peak “limiter” to keep headroom
limit = 10 ** (-headroom_db / 20.0) # e.g., -1 dBFS
peak = float(np.max(np.abs(y))) if y.size else 0.0
if peak > limit:
y *= (limit / peak)
stats["post_peak_limited"] = True
else:
stats["post_peak_limited"] = False
target.samples = y.astype(np.float32)
return target, stats
# ----------------------------
# Crossfade stitch (your good path)
# ----------------------------
def stitch_generated(chunks, sr, xfade_s):
if not chunks:
raise ValueError("no chunks")
xfade_n = int(round(xfade_s * sr))
if xfade_n <= 0:
return au.Waveform(np.concatenate([c.samples for c in chunks], axis=0), sr)
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)
eq_in, eq_out = np.sin(t)[:, None], np.cos(t)[:, None]
first = chunks[0].samples
if first.shape[0] < xfade_n:
raise ValueError("chunk shorter than crossfade prefix")
out = first[xfade_n:].copy() # drop model pre-roll
for i in range(1, len(chunks)):
cur = chunks[i].samples
if cur.shape[0] < xfade_n:
continue
head, tail = cur[:xfade_n], cur[xfade_n:]
mixed = out[-xfade_n:] * eq_out + head * eq_in
out = np.concatenate([out[:-xfade_n], mixed, tail], axis=0)
return au.Waveform(out, sr)
# ----------------------------
# Bar-aligned token context
# ----------------------------
def make_bar_aligned_context(tokens, bpm, fps=25, ctx_frames=250, beats_per_bar=4):
frames_per_bar_f = (beats_per_bar * 60.0 / bpm) * fps
frames_per_bar = int(round(frames_per_bar_f))
if abs(frames_per_bar - frames_per_bar_f) > 1e-3:
reps = int(np.ceil(ctx_frames / len(tokens)))
return np.tile(tokens, (reps, 1))[-ctx_frames:]
reps = int(np.ceil(ctx_frames / len(tokens)))
tiled = np.tile(tokens, (reps, 1))
end = (len(tiled) // frames_per_bar) * frames_per_bar
if end < ctx_frames:
return tiled[-ctx_frames:]
start = end - ctx_frames
return tiled[start:end]
def hard_trim_seconds(wav: au.Waveform, seconds: float) -> au.Waveform:
n = int(round(seconds * wav.sample_rate))
return au.Waveform(wav.samples[:n], wav.sample_rate)
def apply_micro_fades(wav: au.Waveform, ms: int = 5) -> None:
n = int(wav.sample_rate * ms / 1000.0)
if n > 0 and wav.samples.shape[0] > 2*n:
env = np.linspace(0.0, 1.0, n, dtype=np.float32)[:, None]
wav.samples[:n] *= env
wav.samples[-n:] *= env[::-1]
def take_bar_aligned_tail(wav: au.Waveform,
bpm: float,
beats_per_bar: int,
ctx_seconds: float) -> au.Waveform:
"""
Return the LAST N bars whose duration is as close as possible to ctx_seconds,
anchored to the end of `wav`, and bar-aligned.
"""
spb = (60.0 / bpm) * beats_per_bar # seconds per bar
bars_needed = max(1, int(round(ctx_seconds / spb)))
tail_seconds = bars_needed * spb # exact multiple of bars
n = int(round(tail_seconds * wav.sample_rate))
if n >= wav.samples.shape[0]:
# Input shorter than desired tail: keep whole thing (your existing behavior will tile)
return wav
return au.Waveform(wav.samples[-n:], wav.sample_rate)
# ----------------------------
# Main generation (single combined style vector)
# ----------------------------
def generate_loop_continuation_with_mrt(
mrt,
input_wav_path: str,
bpm: float,
extra_styles=None,
style_weights=None,
bars: int = 8,
beats_per_bar: int = 4,
loop_weight: float = 1.0, # NEW
loudness_mode: str = "auto", # "auto"|"lufs"|"rms"|"none"
loudness_headroom_db: float = 1.0, # for the peak guard
):
# Load loop & put into model SR/channels
loop = au.Waveform.from_file(input_wav_path).resample(mrt.sample_rate).as_stereo()
# Compute the model's desired context seconds (e.g., 250 frames / 25 fps = 10s)
codec_fps = float(mrt.codec.frame_rate)
ctx_seconds = float(mrt.config.context_length_frames) / codec_fps # typically 10.0s
# ✅ NEW: take bar-aligned TAIL for context, if input is long enough
loop_for_context = take_bar_aligned_tail(
wav=loop,
bpm=bpm,
beats_per_bar=beats_per_bar,
ctx_seconds=ctx_seconds
)
# Encode ONLY the tail (so we condition on recent audio)
tokens_full = mrt.codec.encode(loop_for_context).astype(np.int32)
tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
# Context
context_tokens = make_bar_aligned_context(
tokens,
bpm=bpm,
fps=int(mrt.codec.frame_rate),
ctx_frames=mrt.config.context_length_frames,
beats_per_bar=beats_per_bar,
)
state = mrt.init_state()
state.context_tokens = context_tokens
# ---------- STYLE: weighted avg into ONE vector ----------
# Base embed from loop with adjustable loop_weight
embeds = []
weights = []
# loop embedding
loop_embed = mrt.embed_style(loop)
embeds.append(loop_embed)
weights.append(float(loop_weight)) # <--- use requested loop weight
# extra styles
if extra_styles:
for i, s in enumerate(extra_styles):
if s.strip():
embeds.append(mrt.embed_style(s.strip()))
w = style_weights[i] if (style_weights and i < len(style_weights)) else 1.0
weights.append(float(w))
# Prevent all-zero weights; normalize
wsum = float(sum(weights))
if wsum <= 0.0:
# fallback: rely on loop to avoid NaNs
weights = [1.0] + [0.0] * (len(weights) - 1)
wsum = 1.0
weights = [w / wsum for w in weights]
# weighted sum -> single style vector (match dtype)
combined_style = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(loop_embed.dtype)
# Chunks to cover exact bars
seconds_per_bar = beats_per_bar * (60.0 / bpm)
total_secs = bars * seconds_per_bar
chunk_secs = mrt.config.chunk_length_frames * mrt.config.frame_length_samples / mrt.sample_rate # ~2.0
steps = int(math.ceil(total_secs / chunk_secs)) + 1 # pad then trim
# Generate
chunks = []
for _ in range(steps):
wav, state = mrt.generate_chunk(state=state, style=combined_style) # ONE style vector
chunks.append(wav)
# Stitch -> trim -> polish
out = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
out = hard_trim_seconds(out, total_secs).peak_normalize(0.95)
apply_micro_fades(out, 5)
# Loudness match to the *input loop* so the return level feels consistent
out, loud_stats = match_loudness_to_reference(
ref=loop, target=out,
method=loudness_mode,
headroom_db=loudness_headroom_db,
)
return out, loud_stats
# ----------------------------
# FastAPI app with lazy, thread-safe model init
# ----------------------------
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # or lock to your domain(s)
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
_MRT = None
_MRT_LOCK = threading.Lock()
def get_mrt():
global _MRT
if _MRT is None:
with _MRT_LOCK:
if _MRT is None:
_MRT = system.MagentaRT(tag="base", guidance_weight=1.0, device="gpu", lazy=False)
return _MRT
@app.post("/generate")
def generate(
loop_audio: UploadFile = File(...),
bpm: float = Form(...),
bars: int = Form(8),
beats_per_bar: int = Form(4),
styles: str = Form("acid house"),
style_weights: str = Form(""),
loop_weight: float = Form(1.0),
loudness_mode: str = Form("auto"),
loudness_headroom_db: float = Form(1.0),
guidance_weight: float = Form(5.0),
temperature: float = Form(1.1),
topk: int = Form(40),
target_sample_rate: int | None = Form(None), # <-- add this
):
# Read file
data = loop_audio.file.read()
if not data:
return {"error": "Empty file"}
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(data)
tmp_path = tmp.name
# Parse styles + weights
extra_styles = [s for s in (styles.split(",") if styles else []) if s.strip()]
weights = [float(x) for x in style_weights.split(",")] if style_weights else None
mrt = get_mrt() # warm once, in this worker thread
# Temporarily override MRT inference knobs for this request
with mrt_overrides(mrt,
guidance_weight=guidance_weight,
temperature=temperature,
topk=topk):
wav, loud_stats = generate_loop_continuation_with_mrt(
mrt,
input_wav_path=tmp_path,
bpm=bpm,
extra_styles=extra_styles,
style_weights=weights,
bars=bars,
beats_per_bar=beats_per_bar,
loop_weight=loop_weight,
loudness_mode=loudness_mode,
loudness_headroom_db=loudness_headroom_db,
)
# 1) Figure out the desired SR
inp_info = sf.info(tmp_path)
input_sr = int(inp_info.samplerate)
target_sr = int(target_sample_rate or input_sr)
# 2) Convert magenta output to target_sr if needed
# wav.samples: shape [num_samples, num_channels], float32/-1..1 (per your code)
cur_sr = int(mrt.sample_rate)
x = wav.samples # np.ndarray (S, C)
if cur_sr != target_sr:
g = gcd(cur_sr, target_sr)
up, down = target_sr // g, cur_sr // g
# ensure 2D shape (S, C)
x = wav.samples
if x.ndim == 1:
x = x[:, None]
y = np.column_stack([resample_poly(x[:, ch], up, down) for ch in range(x.shape[1])])
else:
y = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None]
# 3) Snap to exact frame count for loop-perfect length
seconds_per_bar = (60.0 / float(bpm)) * int(beats_per_bar)
expected_len = int(round(float(bars) * seconds_per_bar * target_sr))
if y.shape[0] < expected_len:
pad = np.zeros((expected_len - y.shape[0], y.shape[1]), dtype=y.dtype)
y = np.vstack([y, pad])
elif y.shape[0] > expected_len:
y = y[:expected_len, :]
total_samples = int(y.shape[0])
loop_duration_seconds = total_samples / float(target_sr)
# 4) Write y into buf as WAV @ target_sr
buf = io.BytesIO()
sf.write(buf, y, target_sr, subtype="FLOAT", format="WAV")
buf.seek(0)
audio_b64 = base64.b64encode(buf.read()).decode("utf-8")
# 5) Update metadata to be authoritative
metadata = {
"bpm": int(round(bpm)),
"bars": int(bars),
"beats_per_bar": int(beats_per_bar),
"styles": extra_styles,
"style_weights": weights,
"loop_weight": loop_weight,
"loudness": loud_stats,
"sample_rate": int(target_sr),
"channels": int(y.shape[1]),
"crossfade_seconds": mrt.config.crossfade_length,
"total_samples": total_samples,
"seconds_per_bar": seconds_per_bar,
"loop_duration_seconds": loop_duration_seconds,
"guidance_weight": guidance_weight,
"temperature": temperature,
"topk": topk,
}
return {"audio_base64": audio_b64, "metadata": metadata}
@app.get("/health")
def health():
return {"ok": True}