Spaces:
Running
Running
Commit
·
956f1a2
1
Parent(s):
c4aed03
keep jamming button
Browse files- app.py +173 -161
- jam_worker.py +0 -0
- utils.py +168 -0
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from magenta_rt import system, audio as au
|
2 |
import numpy as np
|
3 |
-
from fastapi import FastAPI, UploadFile, File, Form
|
4 |
import tempfile, io, base64, math, threading
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
from contextlib import contextmanager
|
@@ -8,6 +8,16 @@ import soundfile as sf
|
|
8 |
import numpy as np
|
9 |
from math import gcd
|
10 |
from scipy.signal import resample_poly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
@contextmanager
|
13 |
def mrt_overrides(mrt, **kwargs):
|
@@ -30,133 +40,6 @@ try:
|
|
30 |
except Exception:
|
31 |
_HAS_LOUDNORM = False
|
32 |
|
33 |
-
def _measure_lufs(wav: au.Waveform) -> float:
|
34 |
-
# pyloudnorm expects float32/float64, shape (n,) or (n, ch)
|
35 |
-
meter = pyln.Meter(wav.sample_rate) # defaults to BS.1770-4
|
36 |
-
return float(meter.integrated_loudness(wav.samples))
|
37 |
-
|
38 |
-
def _rms(x: np.ndarray) -> float:
|
39 |
-
if x.size == 0: return 0.0
|
40 |
-
return float(np.sqrt(np.mean(x**2)))
|
41 |
-
|
42 |
-
def match_loudness_to_reference(
|
43 |
-
ref: au.Waveform,
|
44 |
-
target: au.Waveform,
|
45 |
-
method: str = "auto", # "auto"|"lufs"|"rms"|"none"
|
46 |
-
headroom_db: float = 1.0
|
47 |
-
) -> tuple[au.Waveform, dict]:
|
48 |
-
"""
|
49 |
-
Scales `target` to match `ref` loudness. Returns (adjusted_wave, stats).
|
50 |
-
"""
|
51 |
-
stats = {"method": method, "applied_gain_db": 0.0}
|
52 |
-
|
53 |
-
if method == "none":
|
54 |
-
return target, stats
|
55 |
-
|
56 |
-
if method == "auto":
|
57 |
-
method = "lufs" if _HAS_LOUDNORM else "rms"
|
58 |
-
|
59 |
-
if method == "lufs" and _HAS_LOUDNORM:
|
60 |
-
L_ref = _measure_lufs(ref)
|
61 |
-
L_tgt = _measure_lufs(target)
|
62 |
-
delta_db = L_ref - L_tgt
|
63 |
-
gain = 10.0 ** (delta_db / 20.0)
|
64 |
-
y = target.samples.astype(np.float32) * gain
|
65 |
-
stats.update({"ref_lufs": L_ref, "tgt_lufs_before": L_tgt, "applied_gain_db": delta_db})
|
66 |
-
else:
|
67 |
-
# RMS fallback
|
68 |
-
ra = _rms(ref.samples)
|
69 |
-
rb = _rms(target.samples)
|
70 |
-
if rb <= 1e-12:
|
71 |
-
return target, stats
|
72 |
-
gain = ra / rb
|
73 |
-
y = target.samples.astype(np.float32) * gain
|
74 |
-
stats.update({"ref_rms": ra, "tgt_rms_before": rb, "applied_gain_db": 20*np.log10(max(gain,1e-12))})
|
75 |
-
|
76 |
-
# simple peak “limiter” to keep headroom
|
77 |
-
limit = 10 ** (-headroom_db / 20.0) # e.g., -1 dBFS
|
78 |
-
peak = float(np.max(np.abs(y))) if y.size else 0.0
|
79 |
-
if peak > limit:
|
80 |
-
y *= (limit / peak)
|
81 |
-
stats["post_peak_limited"] = True
|
82 |
-
else:
|
83 |
-
stats["post_peak_limited"] = False
|
84 |
-
|
85 |
-
target.samples = y.astype(np.float32)
|
86 |
-
return target, stats
|
87 |
-
|
88 |
-
# ----------------------------
|
89 |
-
# Crossfade stitch (your good path)
|
90 |
-
# ----------------------------
|
91 |
-
def stitch_generated(chunks, sr, xfade_s):
|
92 |
-
if not chunks:
|
93 |
-
raise ValueError("no chunks")
|
94 |
-
xfade_n = int(round(xfade_s * sr))
|
95 |
-
if xfade_n <= 0:
|
96 |
-
return au.Waveform(np.concatenate([c.samples for c in chunks], axis=0), sr)
|
97 |
-
|
98 |
-
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)
|
99 |
-
eq_in, eq_out = np.sin(t)[:, None], np.cos(t)[:, None]
|
100 |
-
|
101 |
-
first = chunks[0].samples
|
102 |
-
if first.shape[0] < xfade_n:
|
103 |
-
raise ValueError("chunk shorter than crossfade prefix")
|
104 |
-
out = first[xfade_n:].copy() # drop model pre-roll
|
105 |
-
|
106 |
-
for i in range(1, len(chunks)):
|
107 |
-
cur = chunks[i].samples
|
108 |
-
if cur.shape[0] < xfade_n:
|
109 |
-
continue
|
110 |
-
head, tail = cur[:xfade_n], cur[xfade_n:]
|
111 |
-
mixed = out[-xfade_n:] * eq_out + head * eq_in
|
112 |
-
out = np.concatenate([out[:-xfade_n], mixed, tail], axis=0)
|
113 |
-
|
114 |
-
return au.Waveform(out, sr)
|
115 |
-
|
116 |
-
# ----------------------------
|
117 |
-
# Bar-aligned token context
|
118 |
-
# ----------------------------
|
119 |
-
def make_bar_aligned_context(tokens, bpm, fps=25, ctx_frames=250, beats_per_bar=4):
|
120 |
-
frames_per_bar_f = (beats_per_bar * 60.0 / bpm) * fps
|
121 |
-
frames_per_bar = int(round(frames_per_bar_f))
|
122 |
-
if abs(frames_per_bar - frames_per_bar_f) > 1e-3:
|
123 |
-
reps = int(np.ceil(ctx_frames / len(tokens)))
|
124 |
-
return np.tile(tokens, (reps, 1))[-ctx_frames:]
|
125 |
-
reps = int(np.ceil(ctx_frames / len(tokens)))
|
126 |
-
tiled = np.tile(tokens, (reps, 1))
|
127 |
-
end = (len(tiled) // frames_per_bar) * frames_per_bar
|
128 |
-
if end < ctx_frames:
|
129 |
-
return tiled[-ctx_frames:]
|
130 |
-
start = end - ctx_frames
|
131 |
-
return tiled[start:end]
|
132 |
-
|
133 |
-
def hard_trim_seconds(wav: au.Waveform, seconds: float) -> au.Waveform:
|
134 |
-
n = int(round(seconds * wav.sample_rate))
|
135 |
-
return au.Waveform(wav.samples[:n], wav.sample_rate)
|
136 |
-
|
137 |
-
def apply_micro_fades(wav: au.Waveform, ms: int = 5) -> None:
|
138 |
-
n = int(wav.sample_rate * ms / 1000.0)
|
139 |
-
if n > 0 and wav.samples.shape[0] > 2*n:
|
140 |
-
env = np.linspace(0.0, 1.0, n, dtype=np.float32)[:, None]
|
141 |
-
wav.samples[:n] *= env
|
142 |
-
wav.samples[-n:] *= env[::-1]
|
143 |
-
|
144 |
-
def take_bar_aligned_tail(wav, bpm, beats_per_bar, ctx_seconds, max_bars=None):
|
145 |
-
"""
|
146 |
-
Return the LAST N bars whose duration is as close as possible to ctx_seconds,
|
147 |
-
anchored to the end of `wav`, and bar-aligned.
|
148 |
-
"""
|
149 |
-
spb = (60.0 / bpm) * beats_per_bar
|
150 |
-
|
151 |
-
bars_needed = max(1, int(round(ctx_seconds / spb)))
|
152 |
-
if max_bars is not None:
|
153 |
-
bars_needed = min(bars_needed, max_bars)
|
154 |
-
tail_seconds = bars_needed * spb
|
155 |
-
n = int(round(tail_seconds * wav.sample_rate))
|
156 |
-
if n >= wav.samples.shape[0]:
|
157 |
-
return wav
|
158 |
-
return au.Waveform(wav.samples[-n:], wav.sample_rate)
|
159 |
-
|
160 |
# ----------------------------
|
161 |
# Main generation (single combined style vector)
|
162 |
# ----------------------------
|
@@ -326,42 +209,18 @@ def generate(
|
|
326 |
input_sr = int(inp_info.samplerate)
|
327 |
target_sr = int(target_sample_rate or input_sr)
|
328 |
|
329 |
-
# 2) Convert
|
330 |
-
# wav.samples: shape [num_samples, num_channels], float32/-1..1 (per your code)
|
331 |
cur_sr = int(mrt.sample_rate)
|
332 |
-
x = wav.samples
|
333 |
-
|
334 |
-
if cur_sr != target_sr:
|
335 |
-
g = gcd(cur_sr, target_sr)
|
336 |
-
up, down = target_sr // g, cur_sr // g
|
337 |
-
# ensure 2D shape (S, C)
|
338 |
-
x = wav.samples
|
339 |
-
if x.ndim == 1:
|
340 |
-
x = x[:, None]
|
341 |
-
y = np.column_stack([resample_poly(x[:, ch], up, down) for ch in range(x.shape[1])])
|
342 |
-
else:
|
343 |
-
y = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None]
|
344 |
-
|
345 |
-
# 3) Snap to exact frame count for loop-perfect length
|
346 |
seconds_per_bar = (60.0 / float(bpm)) * int(beats_per_bar)
|
347 |
-
|
|
|
348 |
|
349 |
-
|
350 |
-
|
351 |
-
y = np.vstack([y, pad])
|
352 |
-
elif y.shape[0] > expected_len:
|
353 |
-
y = y[:expected_len, :]
|
354 |
-
|
355 |
-
total_samples = int(y.shape[0])
|
356 |
loop_duration_seconds = total_samples / float(target_sr)
|
357 |
|
358 |
-
# 4)
|
359 |
-
buf = io.BytesIO()
|
360 |
-
sf.write(buf, y, target_sr, subtype="FLOAT", format="WAV")
|
361 |
-
buf.seek(0)
|
362 |
-
audio_b64 = base64.b64encode(buf.read()).decode("utf-8")
|
363 |
-
|
364 |
-
# 5) Update metadata to be authoritative
|
365 |
metadata = {
|
366 |
"bpm": int(round(bpm)),
|
367 |
"bars": int(bars),
|
@@ -371,9 +230,9 @@ def generate(
|
|
371 |
"loop_weight": loop_weight,
|
372 |
"loudness": loud_stats,
|
373 |
"sample_rate": int(target_sr),
|
374 |
-
"channels": int(
|
375 |
"crossfade_seconds": mrt.config.crossfade_length,
|
376 |
-
"total_samples": total_samples,
|
377 |
"seconds_per_bar": seconds_per_bar,
|
378 |
"loop_duration_seconds": loop_duration_seconds,
|
379 |
"guidance_weight": guidance_weight,
|
@@ -382,6 +241,159 @@ def generate(
|
|
382 |
}
|
383 |
return {"audio_base64": audio_b64, "metadata": metadata}
|
384 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
@app.get("/health")
|
386 |
def health():
|
387 |
return {"ok": True}
|
|
|
1 |
from magenta_rt import system, audio as au
|
2 |
import numpy as np
|
3 |
+
from fastapi import FastAPI, UploadFile, File, Form, Body, HTTPException, Response
|
4 |
import tempfile, io, base64, math, threading
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
from contextlib import contextmanager
|
|
|
8 |
import numpy as np
|
9 |
from math import gcd
|
10 |
from scipy.signal import resample_poly
|
11 |
+
from utils import (
|
12 |
+
match_loudness_to_reference, stitch_generated, hard_trim_seconds,
|
13 |
+
apply_micro_fades, make_bar_aligned_context, take_bar_aligned_tail,
|
14 |
+
resample_and_snap, wav_bytes_base64
|
15 |
+
)
|
16 |
+
|
17 |
+
from jam_worker import JamWorker, JamParams, JamChunk
|
18 |
+
import uuid, threading
|
19 |
+
jam_registry: dict[str, JamWorker] = {}
|
20 |
+
jam_lock = threading.Lock()
|
21 |
|
22 |
@contextmanager
|
23 |
def mrt_overrides(mrt, **kwargs):
|
|
|
40 |
except Exception:
|
41 |
_HAS_LOUDNORM = False
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# ----------------------------
|
44 |
# Main generation (single combined style vector)
|
45 |
# ----------------------------
|
|
|
209 |
input_sr = int(inp_info.samplerate)
|
210 |
target_sr = int(target_sample_rate or input_sr)
|
211 |
|
212 |
+
# 2) Convert to target SR + snap to exact bars
|
|
|
213 |
cur_sr = int(mrt.sample_rate)
|
214 |
+
x = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
seconds_per_bar = (60.0 / float(bpm)) * int(beats_per_bar)
|
216 |
+
expected_secs = float(bars) * seconds_per_bar
|
217 |
+
x = resample_and_snap(x, cur_sr=cur_sr, target_sr=target_sr, seconds=expected_secs)
|
218 |
|
219 |
+
# 3) Encode WAV once (no extra write)
|
220 |
+
audio_b64, total_samples, channels = wav_bytes_base64(x, target_sr)
|
|
|
|
|
|
|
|
|
|
|
221 |
loop_duration_seconds = total_samples / float(target_sr)
|
222 |
|
223 |
+
# 4) Metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
metadata = {
|
225 |
"bpm": int(round(bpm)),
|
226 |
"bars": int(bars),
|
|
|
230 |
"loop_weight": loop_weight,
|
231 |
"loudness": loud_stats,
|
232 |
"sample_rate": int(target_sr),
|
233 |
+
"channels": int(channels),
|
234 |
"crossfade_seconds": mrt.config.crossfade_length,
|
235 |
+
"total_samples": int(total_samples),
|
236 |
"seconds_per_bar": seconds_per_bar,
|
237 |
"loop_duration_seconds": loop_duration_seconds,
|
238 |
"guidance_weight": guidance_weight,
|
|
|
241 |
}
|
242 |
return {"audio_base64": audio_b64, "metadata": metadata}
|
243 |
|
244 |
+
# ----------------------------
|
245 |
+
# the 'keep jamming' button
|
246 |
+
# ----------------------------
|
247 |
+
|
248 |
+
@app.post("/jam/start")
|
249 |
+
def jam_start(
|
250 |
+
loop_audio: UploadFile = File(...),
|
251 |
+
bpm: float = Form(...),
|
252 |
+
bars_per_chunk: int = Form(4),
|
253 |
+
beats_per_bar: int = Form(4),
|
254 |
+
styles: str = Form(""),
|
255 |
+
style_weights: str = Form(""),
|
256 |
+
loop_weight: float = Form(1.0),
|
257 |
+
loudness_mode: str = Form("auto"),
|
258 |
+
loudness_headroom_db: float = Form(1.0),
|
259 |
+
guidance_weight: float = Form(1.1),
|
260 |
+
temperature: float = Form(1.1),
|
261 |
+
topk: int = Form(40),
|
262 |
+
target_sample_rate: int | None = Form(None),
|
263 |
+
):
|
264 |
+
# enforce single active jam per GPU
|
265 |
+
with jam_lock:
|
266 |
+
for sid, w in list(jam_registry.items()):
|
267 |
+
if w.is_alive():
|
268 |
+
raise HTTPException(status_code=429, detail="A jam is already running. Try again later.")
|
269 |
+
|
270 |
+
# read input + prep context/style (reuse your existing code)
|
271 |
+
data = loop_audio.file.read()
|
272 |
+
if not data: raise HTTPException(status_code=400, detail="Empty file")
|
273 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
|
274 |
+
tmp.write(data); tmp_path = tmp.name
|
275 |
+
|
276 |
+
mrt = get_mrt()
|
277 |
+
loop = au.Waveform.from_file(tmp_path).resample(mrt.sample_rate).as_stereo()
|
278 |
+
|
279 |
+
# build tail context + style vec (tail-biased)
|
280 |
+
codec_fps = float(mrt.codec.frame_rate)
|
281 |
+
ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
|
282 |
+
loop_tail = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds)
|
283 |
+
|
284 |
+
# style vec = normalized mix of loop_tail + extra styles
|
285 |
+
embeds, weights = [mrt.embed_style(loop_tail)], [float(loop_weight)]
|
286 |
+
extra = [s for s in (styles.split(",") if styles else []) if s.strip()]
|
287 |
+
sw = [float(x) for x in style_weights.split(",")] if style_weights else []
|
288 |
+
for i, s in enumerate(extra):
|
289 |
+
embeds.append(mrt.embed_style(s.strip()))
|
290 |
+
weights.append(sw[i] if i < len(sw) else 1.0)
|
291 |
+
wsum = sum(weights) or 1.0
|
292 |
+
weights = [w / wsum for w in weights]
|
293 |
+
style_vec = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(embeds[0].dtype)
|
294 |
+
|
295 |
+
# target SR (default input SR)
|
296 |
+
inp_info = sf.info(tmp_path)
|
297 |
+
input_sr = int(inp_info.samplerate)
|
298 |
+
target_sr = int(target_sample_rate or input_sr)
|
299 |
+
|
300 |
+
params = JamParams(
|
301 |
+
bpm=bpm, beats_per_bar=beats_per_bar, bars_per_chunk=bars_per_chunk,
|
302 |
+
target_sr=target_sr, loudness_mode=loudness_mode, headroom_db=loudness_headroom_db,
|
303 |
+
style_vec=style_vec, ref_loop=loop_tail,
|
304 |
+
guidance_weight=guidance_weight, temperature=temperature, topk=topk
|
305 |
+
)
|
306 |
+
|
307 |
+
worker = JamWorker(mrt, params)
|
308 |
+
sid = str(uuid.uuid4())
|
309 |
+
with jam_lock:
|
310 |
+
jam_registry[sid] = worker
|
311 |
+
worker.start()
|
312 |
+
|
313 |
+
return {"session_id": sid}
|
314 |
+
|
315 |
+
@app.get("/jam/next")
|
316 |
+
def jam_next(session_id: str, since: int = 0):
|
317 |
+
with jam_lock:
|
318 |
+
worker = jam_registry.get(session_id)
|
319 |
+
if worker is None or not worker.is_alive():
|
320 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
321 |
+
|
322 |
+
# drain outbox entries with index > since
|
323 |
+
items = []
|
324 |
+
with worker._lock:
|
325 |
+
for ch in worker.outbox:
|
326 |
+
if ch.index > since:
|
327 |
+
items.append({"index": ch.index, "audio_base64": ch.audio_base64, "metadata": ch.metadata})
|
328 |
+
# optional: truncate old items to keep memory bounded
|
329 |
+
if len(worker.outbox) > 32:
|
330 |
+
worker.outbox = worker.outbox[-16:]
|
331 |
+
|
332 |
+
if not items:
|
333 |
+
return Response(status_code=204) # nothing yet
|
334 |
+
return {"chunks": items}
|
335 |
+
|
336 |
+
@app.post("/jam/stop")
|
337 |
+
def jam_stop(session_id: str = Body(..., embed=True)):
|
338 |
+
with jam_lock:
|
339 |
+
worker = jam_registry.get(session_id)
|
340 |
+
if worker is None:
|
341 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
342 |
+
worker.stop()
|
343 |
+
worker.join(timeout=2.0)
|
344 |
+
with jam_lock:
|
345 |
+
jam_registry.pop(session_id, None)
|
346 |
+
return {"stopped": True}
|
347 |
+
|
348 |
+
@app.post("/jam/update")
|
349 |
+
def jam_update(session_id: str = Form(...),
|
350 |
+
guidance_weight: float | None = Form(None),
|
351 |
+
temperature: float | None = Form(None),
|
352 |
+
topk: int | None = Form(None)):
|
353 |
+
with jam_lock:
|
354 |
+
worker = jam_registry.get(session_id)
|
355 |
+
if worker is None or not worker.is_alive():
|
356 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
357 |
+
worker.update_knobs(guidance_weight=guidance_weight, temperature=temperature, topk=topk)
|
358 |
+
return {"ok": True}
|
359 |
+
|
360 |
+
@app.get("/jam/status")
|
361 |
+
def jam_status(session_id: str):
|
362 |
+
with jam_lock:
|
363 |
+
worker = jam_registry.get(session_id)
|
364 |
+
|
365 |
+
if worker is None:
|
366 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
367 |
+
|
368 |
+
running = worker.is_alive()
|
369 |
+
|
370 |
+
# Snapshot safely
|
371 |
+
with worker._lock:
|
372 |
+
last_index = int(worker.idx)
|
373 |
+
queued = len(worker.outbox)
|
374 |
+
p = worker.params
|
375 |
+
spb = p.beats_per_bar * (60.0 / p.bpm)
|
376 |
+
chunk_secs = p.bars_per_chunk * spb
|
377 |
+
target_sr = p.target_sr
|
378 |
+
bars_per_chunk = p.bars_per_chunk
|
379 |
+
beats_per_bar = p.beats_per_bar
|
380 |
+
bpm = p.bpm
|
381 |
+
|
382 |
+
return {
|
383 |
+
"running": running,
|
384 |
+
"last_index": last_index, # last finished chunk index (0 if none yet)
|
385 |
+
"queued_chunks": queued, # how many not-yet-fetched chunks are in the outbox
|
386 |
+
"bpm": bpm,
|
387 |
+
"beats_per_bar": beats_per_bar,
|
388 |
+
"bars_per_chunk": bars_per_chunk,
|
389 |
+
"seconds_per_bar": spb,
|
390 |
+
"chunk_duration_seconds": chunk_secs,
|
391 |
+
"target_sample_rate": target_sr,
|
392 |
+
"last_chunk_started_at": worker.last_chunk_started_at,
|
393 |
+
"last_chunk_completed_at": worker.last_chunk_completed_at,
|
394 |
+
}
|
395 |
+
|
396 |
+
|
397 |
@app.get("/health")
|
398 |
def health():
|
399 |
return {"ok": True}
|
jam_worker.py
ADDED
File without changes
|
utils.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils.py
|
2 |
+
from __future__ import annotations
|
3 |
+
import io, base64, math
|
4 |
+
from math import gcd
|
5 |
+
import numpy as np
|
6 |
+
import soundfile as sf
|
7 |
+
from scipy.signal import resample_poly
|
8 |
+
|
9 |
+
# Magenta RT audio types
|
10 |
+
from magenta_rt import audio as au
|
11 |
+
|
12 |
+
# Optional loudness
|
13 |
+
try:
|
14 |
+
import pyloudnorm as pyln
|
15 |
+
_HAS_LOUDNORM = True
|
16 |
+
except Exception:
|
17 |
+
_HAS_LOUDNORM = False
|
18 |
+
|
19 |
+
|
20 |
+
# ---------- Loudness ----------
|
21 |
+
def _measure_lufs(wav: au.Waveform) -> float:
|
22 |
+
meter = pyln.Meter(wav.sample_rate) # BS.1770-4
|
23 |
+
return float(meter.integrated_loudness(wav.samples))
|
24 |
+
|
25 |
+
def _rms(x: np.ndarray) -> float:
|
26 |
+
if x.size == 0: return 0.0
|
27 |
+
return float(np.sqrt(np.mean(x**2)))
|
28 |
+
|
29 |
+
def match_loudness_to_reference(
|
30 |
+
ref: au.Waveform,
|
31 |
+
target: au.Waveform,
|
32 |
+
method: str = "auto", # "auto"|"lufs"|"rms"|"none"
|
33 |
+
headroom_db: float = 1.0
|
34 |
+
) -> tuple[au.Waveform, dict]:
|
35 |
+
stats = {"method": method, "applied_gain_db": 0.0}
|
36 |
+
if method == "none":
|
37 |
+
return target, stats
|
38 |
+
|
39 |
+
if method == "auto":
|
40 |
+
method = "lufs" if _HAS_LOUDNORM else "rms"
|
41 |
+
|
42 |
+
if method == "lufs" and _HAS_LOUDNORM:
|
43 |
+
L_ref = _measure_lufs(ref)
|
44 |
+
L_tgt = _measure_lufs(target)
|
45 |
+
delta_db = L_ref - L_tgt
|
46 |
+
gain = 10.0 ** (delta_db / 20.0)
|
47 |
+
y = target.samples.astype(np.float32) * gain
|
48 |
+
stats.update({"ref_lufs": L_ref, "tgt_lufs_before": L_tgt, "applied_gain_db": delta_db})
|
49 |
+
else:
|
50 |
+
ra = _rms(ref.samples)
|
51 |
+
rb = _rms(target.samples)
|
52 |
+
if rb <= 1e-12:
|
53 |
+
return target, stats
|
54 |
+
gain = ra / rb
|
55 |
+
y = target.samples.astype(np.float32) * gain
|
56 |
+
stats.update({"ref_rms": ra, "tgt_rms_before": rb, "applied_gain_db": 20*np.log10(max(gain,1e-12))})
|
57 |
+
|
58 |
+
# simple peak “limiter” to keep headroom
|
59 |
+
limit = 10 ** (-headroom_db / 20.0) # e.g., -1 dBFS
|
60 |
+
peak = float(np.max(np.abs(y))) if y.size else 0.0
|
61 |
+
if peak > limit:
|
62 |
+
y *= (limit / peak)
|
63 |
+
stats["post_peak_limited"] = True
|
64 |
+
else:
|
65 |
+
stats["post_peak_limited"] = False
|
66 |
+
|
67 |
+
target.samples = y.astype(np.float32)
|
68 |
+
return target, stats
|
69 |
+
|
70 |
+
|
71 |
+
# ---------- Stitch / fades / trims ----------
|
72 |
+
def stitch_generated(chunks, sr: int, xfade_s: float) -> au.Waveform:
|
73 |
+
if not chunks:
|
74 |
+
raise ValueError("no chunks")
|
75 |
+
xfade_n = int(round(xfade_s * sr))
|
76 |
+
if xfade_n <= 0:
|
77 |
+
return au.Waveform(np.concatenate([c.samples for c in chunks], axis=0), sr)
|
78 |
+
|
79 |
+
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)
|
80 |
+
eq_in, eq_out = np.sin(t)[:, None], np.cos(t)[:, None]
|
81 |
+
|
82 |
+
first = chunks[0].samples
|
83 |
+
if first.shape[0] < xfade_n:
|
84 |
+
raise ValueError("chunk shorter than crossfade prefix")
|
85 |
+
out = first[xfade_n:].copy() # drop model pre-roll
|
86 |
+
|
87 |
+
for i in range(1, len(chunks)):
|
88 |
+
cur = chunks[i].samples
|
89 |
+
if cur.shape[0] < xfade_n:
|
90 |
+
continue
|
91 |
+
head, tail = cur[:xfade_n], cur[xfade_n:]
|
92 |
+
mixed = out[-xfade_n:] * eq_out + head * eq_in
|
93 |
+
out = np.concatenate([out[:-xfade_n], mixed, tail], axis=0)
|
94 |
+
|
95 |
+
return au.Waveform(out, sr)
|
96 |
+
|
97 |
+
def hard_trim_seconds(wav: au.Waveform, seconds: float) -> au.Waveform:
|
98 |
+
n = int(round(seconds * wav.sample_rate))
|
99 |
+
return au.Waveform(wav.samples[:n], wav.sample_rate)
|
100 |
+
|
101 |
+
def apply_micro_fades(wav: au.Waveform, ms: int = 5) -> None:
|
102 |
+
n = int(wav.sample_rate * ms / 1000.0)
|
103 |
+
if n > 0 and wav.samples.shape[0] > 2*n:
|
104 |
+
env = np.linspace(0.0, 1.0, n, dtype=np.float32)[:, None]
|
105 |
+
wav.samples[:n] *= env
|
106 |
+
wav.samples[-n:] *= env[::-1]
|
107 |
+
|
108 |
+
|
109 |
+
# ---------- Token context helpers ----------
|
110 |
+
def make_bar_aligned_context(tokens, bpm, fps=25, ctx_frames=250, beats_per_bar=4):
|
111 |
+
frames_per_bar_f = (beats_per_bar * 60.0 / bpm) * fps
|
112 |
+
frames_per_bar = int(round(frames_per_bar_f))
|
113 |
+
if abs(frames_per_bar - frames_per_bar_f) > 1e-3:
|
114 |
+
reps = int(np.ceil(ctx_frames / len(tokens)))
|
115 |
+
return np.tile(tokens, (reps, 1))[-ctx_frames:]
|
116 |
+
reps = int(np.ceil(ctx_frames / len(tokens)))
|
117 |
+
tiled = np.tile(tokens, (reps, 1))
|
118 |
+
end = (len(tiled) // frames_per_bar) * frames_per_bar
|
119 |
+
if end < ctx_frames:
|
120 |
+
return tiled[-ctx_frames:]
|
121 |
+
start = end - ctx_frames
|
122 |
+
return tiled[start:end]
|
123 |
+
|
124 |
+
def take_bar_aligned_tail(wav: au.Waveform, bpm: float, beats_per_bar: int, ctx_seconds: float, max_bars=None) -> au.Waveform:
|
125 |
+
spb = (60.0 / bpm) * beats_per_bar
|
126 |
+
bars_needed = max(1, int(round(ctx_seconds / spb)))
|
127 |
+
if max_bars is not None:
|
128 |
+
bars_needed = min(bars_needed, max_bars)
|
129 |
+
tail_seconds = bars_needed * spb
|
130 |
+
n = int(round(tail_seconds * wav.sample_rate))
|
131 |
+
if n >= wav.samples.shape[0]:
|
132 |
+
return wav
|
133 |
+
return au.Waveform(wav.samples[-n:], wav.sample_rate)
|
134 |
+
|
135 |
+
|
136 |
+
# ---------- SR normalize + snap ----------
|
137 |
+
def resample_and_snap(x: np.ndarray, cur_sr: int, target_sr: int, seconds: float) -> np.ndarray:
|
138 |
+
"""
|
139 |
+
x: np.ndarray shape (S, C), float32
|
140 |
+
Returns: exact-length array (round(seconds*target_sr), C)
|
141 |
+
"""
|
142 |
+
if x.ndim == 1:
|
143 |
+
x = x[:, None]
|
144 |
+
if cur_sr != target_sr:
|
145 |
+
g = gcd(cur_sr, target_sr)
|
146 |
+
up, down = target_sr // g, cur_sr // g
|
147 |
+
x = resample_poly(x, up, down, axis=0)
|
148 |
+
|
149 |
+
expected_len = int(round(seconds * target_sr))
|
150 |
+
if x.shape[0] < expected_len:
|
151 |
+
pad = np.zeros((expected_len - x.shape[0], x.shape[1]), dtype=x.dtype)
|
152 |
+
x = np.vstack([x, pad])
|
153 |
+
elif x.shape[0] > expected_len:
|
154 |
+
x = x[:expected_len, :]
|
155 |
+
return x.astype(np.float32, copy=False)
|
156 |
+
|
157 |
+
|
158 |
+
# ---------- WAV encode ----------
|
159 |
+
def wav_bytes_base64(x: np.ndarray, sr: int) -> tuple[str, int, int]:
|
160 |
+
"""
|
161 |
+
x: np.ndarray shape (S, C)
|
162 |
+
returns: (base64_wav, total_samples, channels)
|
163 |
+
"""
|
164 |
+
buf = io.BytesIO()
|
165 |
+
sf.write(buf, x, sr, subtype="FLOAT", format="WAV")
|
166 |
+
buf.seek(0)
|
167 |
+
b64 = base64.b64encode(buf.read()).decode("utf-8")
|
168 |
+
return b64, int(x.shape[0]), int(x.shape[1])
|