Spaces:
Running
Running
Commit
·
f70477a
1
Parent(s):
b564cf9
lets try it
Browse files- Dockerfile +137 -0
- app.py +298 -0
Dockerfile
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# thecollabagepatch/magenta:latest
|
2 |
+
FROM nvidia/cuda:12.6.2-cudnn-runtime-ubuntu22.04
|
3 |
+
|
4 |
+
# CUDA libs present + on loader path
|
5 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
6 |
+
cuda-libraries-12-4 && rm -rf /var/lib/apt/lists/*
|
7 |
+
ENV LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda-12.4/lib64:/usr/local/cuda-12.4/compat:/usr/local/cuda/targets/x86_64-linux/lib:${LD_LIBRARY_PATH}
|
8 |
+
RUN ln -sf /usr/local/cuda/targets/x86_64-linux/lib /usr/local/cuda/lib64 || true
|
9 |
+
|
10 |
+
# Ensure the NVIDIA repo key is present (non-interactive) and install cuDNN 9.8
|
11 |
+
RUN set -eux; \
|
12 |
+
apt-get update && apt-get install -y --no-install-recommends gnupg ca-certificates curl; \
|
13 |
+
install -d -m 0755 /usr/share/keyrings; \
|
14 |
+
# Refresh the *same* keyring the base source uses (no second source file)
|
15 |
+
curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub \
|
16 |
+
| gpg --batch --yes --dearmor -o /usr/share/keyrings/cuda-archive-keyring.gpg; \
|
17 |
+
apt-get update; \
|
18 |
+
# If libcudnn is "held", unhold it so we can move to 9.8
|
19 |
+
apt-mark unhold libcudnn9-cuda-12 || true; \
|
20 |
+
# Install cuDNN 9.8 for CUDA 12 (correct dev package name!)
|
21 |
+
apt-get install -y --no-install-recommends \
|
22 |
+
'libcudnn9-cuda-12=9.8.*' \
|
23 |
+
'libcudnn9-dev-cuda-12=9.8.*' \
|
24 |
+
--allow-downgrades --allow-change-held-packages; \
|
25 |
+
apt-mark hold libcudnn9-cuda-12 || true; \
|
26 |
+
ldconfig; \
|
27 |
+
rm -rf /var/lib/apt/lists/*
|
28 |
+
|
29 |
+
# (optional) preload workaround if still needed
|
30 |
+
ENV LD_PRELOAD=/usr/local/cuda/lib64/libcusparse.so.12:/usr/local/cuda/lib64/libcublas.so.12:/usr/local/cuda/lib64/libcublasLt.so.12:/usr/local/cuda/lib64/libcufft.so.11:/usr/local/cuda/lib64/libcusolver.so.11
|
31 |
+
|
32 |
+
ENV DEBIAN_FRONTEND=noninteractive \
|
33 |
+
PYTHONUNBUFFERED=1 \
|
34 |
+
PIP_NO_CACHE_DIR=1 \
|
35 |
+
TF_FORCE_GPU_ALLOW_GROWTH=true \
|
36 |
+
XLA_PYTHON_CLIENT_PREALLOCATE=false
|
37 |
+
|
38 |
+
ENV JAX_PLATFORMS=""
|
39 |
+
|
40 |
+
# --- OS deps ---
|
41 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
42 |
+
software-properties-common curl ca-certificates git \
|
43 |
+
libsndfile1 ffmpeg \
|
44 |
+
build-essential pkg-config \
|
45 |
+
&& add-apt-repository ppa:deadsnakes/ppa -y \
|
46 |
+
&& apt-get update && apt-get install -y --no-install-recommends \
|
47 |
+
python3.11 python3.11-venv python3.11-distutils python3-pip \
|
48 |
+
&& rm -rf /var/lib/apt/lists/*
|
49 |
+
|
50 |
+
# Make python3 => 3.11 for convenience
|
51 |
+
RUN ln -sf /usr/bin/python3.11 /usr/bin/python && python -m pip install --upgrade pip
|
52 |
+
|
53 |
+
# --- Python deps (pin order matters!) ---
|
54 |
+
# 1) JAX CUDA pins
|
55 |
+
RUN python -m pip install "jax[cuda12]==0.6.2" "jaxlib==0.6.2"
|
56 |
+
|
57 |
+
# 2) Lock seqio early to avoid backtracking madness
|
58 |
+
RUN python -m pip install "seqio==0.0.11"
|
59 |
+
|
60 |
+
# 3) Install Magenta RT *without* deps so we control pins
|
61 |
+
RUN python -m pip install --no-deps 'git+https://github.com/magenta/magenta-realtime#egg=magenta_rt[gpu]'
|
62 |
+
|
63 |
+
# 4) TF nightlies (MATCH DATES!)
|
64 |
+
RUN python -m pip install \
|
65 |
+
"tf_nightly==2.20.0.dev20250619" \
|
66 |
+
"tensorflow-text-nightly==2.20.0.dev20250316" \
|
67 |
+
"tf-hub-nightly"
|
68 |
+
|
69 |
+
# 5) tf2jax pinned alongside tf_nightly so pip doesn’t drag stable TF
|
70 |
+
RUN python -m pip install tf2jax "tf_nightly==2.20.0.dev20250619"
|
71 |
+
|
72 |
+
# 6) The rest of MRT deps + API runtime deps
|
73 |
+
RUN python -m pip install \
|
74 |
+
gin-config librosa resampy soundfile \
|
75 |
+
google-auth google-auth-oauthlib google-auth-httplib2 \
|
76 |
+
google-api-core googleapis-common-protos google-resumable-media \
|
77 |
+
google-cloud-storage requests tqdm typing-extensions numpy==2.1.3 \
|
78 |
+
fastapi uvicorn[standard] python-multipart pyloudnorm
|
79 |
+
|
80 |
+
# 7) Exact commits for T5X/Flaxformer as in pyproject
|
81 |
+
RUN python -m pip install \
|
82 |
+
"t5x @ git+https://github.com/google-research/t5x.git@92c5b46" \
|
83 |
+
"flaxformer @ git+https://github.com/google/flaxformer@399ea3a"
|
84 |
+
|
85 |
+
# ---- FINAL: enforce TF nightlies and clean any stable TF ----
|
86 |
+
RUN python - <<'PY'
|
87 |
+
import sys, sysconfig, glob, os, shutil
|
88 |
+
# Find a writable site dir (site-packages OR dist-packages)
|
89 |
+
cands = [sysconfig.get_paths().get('purelib'), sysconfig.get_paths().get('platlib')]
|
90 |
+
cands += [p for p in sys.path if p and p.endswith(('site-packages','dist-packages'))]
|
91 |
+
site = next(p for p in cands if p and os.path.isdir(p))
|
92 |
+
|
93 |
+
patterns = [
|
94 |
+
"tensorflow", "tensorflow-*.dist-info", "tensorflow-*.egg-info",
|
95 |
+
"tf-nightly-*.dist-info", "tf_nightly-*.dist-info",
|
96 |
+
"tensorflow_text", "tensorflow_text-*.dist-info",
|
97 |
+
"tf-hub-nightly-*.dist-info", "tf_hub_nightly-*.dist-info",
|
98 |
+
"tf_keras-nightly-*.dist-info", "tf_keras_nightly-*.dist-info",
|
99 |
+
"tensorboard*", "tb-nightly-*.dist-info",
|
100 |
+
"keras*", # remove stray keras
|
101 |
+
"tensorflow_hub*", "tensorflow_io*",
|
102 |
+
]
|
103 |
+
for pat in patterns:
|
104 |
+
for path in glob.glob(os.path.join(site, pat)):
|
105 |
+
if os.path.isdir(path): shutil.rmtree(path, ignore_errors=True)
|
106 |
+
else:
|
107 |
+
try: os.remove(path)
|
108 |
+
except FileNotFoundError: pass
|
109 |
+
|
110 |
+
print("TF/Hub/Text cleared in:", site)
|
111 |
+
PY
|
112 |
+
|
113 |
+
# Reinstall pinned nightlies in ONE transaction
|
114 |
+
RUN python -m pip install --no-cache-dir --force-reinstall \
|
115 |
+
"tf-nightly==2.20.0.dev20250619" \
|
116 |
+
"tensorflow-text-nightly==2.20.0.dev20250316" \
|
117 |
+
"tf-hub-nightly"
|
118 |
+
|
119 |
+
RUN python -m pip install huggingface_hub
|
120 |
+
|
121 |
+
RUN python -m pip install --no-cache-dir --force-reinstall "protobuf==4.25.3"
|
122 |
+
|
123 |
+
# Switch to Spaces’ preferred user
|
124 |
+
RUN useradd -m -u 1000 appuser
|
125 |
+
RUN mkdir -p /home/appuser/app && chown -R appuser:appuser /home/appuser
|
126 |
+
WORKDIR /home/appuser/app
|
127 |
+
# keep app under the user’s home (optional)
|
128 |
+
COPY --chown=appuser:appuser /srv/app/app.py /home/appuser/app/app.py
|
129 |
+
|
130 |
+
USER appuser
|
131 |
+
|
132 |
+
|
133 |
+
# expose Spaces’ default
|
134 |
+
EXPOSE 7860
|
135 |
+
|
136 |
+
# respect HF’s PORT env var (falls back to 7860 if not set)
|
137 |
+
CMD ["bash", "-lc", "python -m uvicorn app:app --host 0.0.0.0 --port ${PORT:-7860}"]
|
app.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from magenta_rt import system, audio as au
|
2 |
+
import numpy as np
|
3 |
+
from fastapi import FastAPI, UploadFile, File, Form
|
4 |
+
import tempfile, io, base64, math, threading
|
5 |
+
from fastapi.middleware.cors import CORSMiddleware
|
6 |
+
|
7 |
+
# loudness utils
|
8 |
+
try:
|
9 |
+
import pyloudnorm as pyln
|
10 |
+
_HAS_LOUDNORM = True
|
11 |
+
except Exception:
|
12 |
+
_HAS_LOUDNORM = False
|
13 |
+
|
14 |
+
def _measure_lufs(wav: au.Waveform) -> float:
|
15 |
+
# pyloudnorm expects float32/float64, shape (n,) or (n, ch)
|
16 |
+
meter = pyln.Meter(wav.sample_rate) # defaults to BS.1770-4
|
17 |
+
return float(meter.integrated_loudness(wav.samples))
|
18 |
+
|
19 |
+
def _rms(x: np.ndarray) -> float:
|
20 |
+
if x.size == 0: return 0.0
|
21 |
+
return float(np.sqrt(np.mean(x**2)))
|
22 |
+
|
23 |
+
def match_loudness_to_reference(
|
24 |
+
ref: au.Waveform,
|
25 |
+
target: au.Waveform,
|
26 |
+
method: str = "auto", # "auto"|"lufs"|"rms"|"none"
|
27 |
+
headroom_db: float = 1.0
|
28 |
+
) -> tuple[au.Waveform, dict]:
|
29 |
+
"""
|
30 |
+
Scales `target` to match `ref` loudness. Returns (adjusted_wave, stats).
|
31 |
+
"""
|
32 |
+
stats = {"method": method, "applied_gain_db": 0.0}
|
33 |
+
|
34 |
+
if method == "none":
|
35 |
+
return target, stats
|
36 |
+
|
37 |
+
if method == "auto":
|
38 |
+
method = "lufs" if _HAS_LOUDNORM else "rms"
|
39 |
+
|
40 |
+
if method == "lufs" and _HAS_LOUDNORM:
|
41 |
+
L_ref = _measure_lufs(ref)
|
42 |
+
L_tgt = _measure_lufs(target)
|
43 |
+
delta_db = L_ref - L_tgt
|
44 |
+
gain = 10.0 ** (delta_db / 20.0)
|
45 |
+
y = target.samples.astype(np.float32) * gain
|
46 |
+
stats.update({"ref_lufs": L_ref, "tgt_lufs_before": L_tgt, "applied_gain_db": delta_db})
|
47 |
+
else:
|
48 |
+
# RMS fallback
|
49 |
+
ra = _rms(ref.samples)
|
50 |
+
rb = _rms(target.samples)
|
51 |
+
if rb <= 1e-12:
|
52 |
+
return target, stats
|
53 |
+
gain = ra / rb
|
54 |
+
y = target.samples.astype(np.float32) * gain
|
55 |
+
stats.update({"ref_rms": ra, "tgt_rms_before": rb, "applied_gain_db": 20*np.log10(max(gain,1e-12))})
|
56 |
+
|
57 |
+
# simple peak “limiter” to keep headroom
|
58 |
+
limit = 10 ** (-headroom_db / 20.0) # e.g., -1 dBFS
|
59 |
+
peak = float(np.max(np.abs(y))) if y.size else 0.0
|
60 |
+
if peak > limit:
|
61 |
+
y *= (limit / peak)
|
62 |
+
stats["post_peak_limited"] = True
|
63 |
+
else:
|
64 |
+
stats["post_peak_limited"] = False
|
65 |
+
|
66 |
+
target.samples = y.astype(np.float32)
|
67 |
+
return target, stats
|
68 |
+
|
69 |
+
# ----------------------------
|
70 |
+
# Crossfade stitch (your good path)
|
71 |
+
# ----------------------------
|
72 |
+
def stitch_generated(chunks, sr, xfade_s):
|
73 |
+
if not chunks:
|
74 |
+
raise ValueError("no chunks")
|
75 |
+
xfade_n = int(round(xfade_s * sr))
|
76 |
+
if xfade_n <= 0:
|
77 |
+
return au.Waveform(np.concatenate([c.samples for c in chunks], axis=0), sr)
|
78 |
+
|
79 |
+
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)
|
80 |
+
eq_in, eq_out = np.sin(t)[:, None], np.cos(t)[:, None]
|
81 |
+
|
82 |
+
first = chunks[0].samples
|
83 |
+
if first.shape[0] < xfade_n:
|
84 |
+
raise ValueError("chunk shorter than crossfade prefix")
|
85 |
+
out = first[xfade_n:].copy() # drop model pre-roll
|
86 |
+
|
87 |
+
for i in range(1, len(chunks)):
|
88 |
+
cur = chunks[i].samples
|
89 |
+
if cur.shape[0] < xfade_n:
|
90 |
+
continue
|
91 |
+
head, tail = cur[:xfade_n], cur[xfade_n:]
|
92 |
+
mixed = out[-xfade_n:] * eq_out + head * eq_in
|
93 |
+
out = np.concatenate([out[:-xfade_n], mixed, tail], axis=0)
|
94 |
+
|
95 |
+
return au.Waveform(out, sr)
|
96 |
+
|
97 |
+
# ----------------------------
|
98 |
+
# Bar-aligned token context
|
99 |
+
# ----------------------------
|
100 |
+
def make_bar_aligned_context(tokens, bpm, fps=25, ctx_frames=250, beats_per_bar=4):
|
101 |
+
frames_per_bar_f = (beats_per_bar * 60.0 / bpm) * fps
|
102 |
+
frames_per_bar = int(round(frames_per_bar_f))
|
103 |
+
if abs(frames_per_bar - frames_per_bar_f) > 1e-3:
|
104 |
+
reps = int(np.ceil(ctx_frames / len(tokens)))
|
105 |
+
return np.tile(tokens, (reps, 1))[-ctx_frames:]
|
106 |
+
reps = int(np.ceil(ctx_frames / len(tokens)))
|
107 |
+
tiled = np.tile(tokens, (reps, 1))
|
108 |
+
end = (len(tiled) // frames_per_bar) * frames_per_bar
|
109 |
+
if end < ctx_frames:
|
110 |
+
return tiled[-ctx_frames:]
|
111 |
+
start = end - ctx_frames
|
112 |
+
return tiled[start:end]
|
113 |
+
|
114 |
+
def hard_trim_seconds(wav: au.Waveform, seconds: float) -> au.Waveform:
|
115 |
+
n = int(round(seconds * wav.sample_rate))
|
116 |
+
return au.Waveform(wav.samples[:n], wav.sample_rate)
|
117 |
+
|
118 |
+
def apply_micro_fades(wav: au.Waveform, ms: int = 5) -> None:
|
119 |
+
n = int(wav.sample_rate * ms / 1000.0)
|
120 |
+
if n > 0 and wav.samples.shape[0] > 2*n:
|
121 |
+
env = np.linspace(0.0, 1.0, n, dtype=np.float32)[:, None]
|
122 |
+
wav.samples[:n] *= env
|
123 |
+
wav.samples[-n:] *= env[::-1]
|
124 |
+
|
125 |
+
# ----------------------------
|
126 |
+
# Main generation (single combined style vector)
|
127 |
+
# ----------------------------
|
128 |
+
def generate_loop_continuation_with_mrt(
|
129 |
+
mrt,
|
130 |
+
input_wav_path: str,
|
131 |
+
bpm: float,
|
132 |
+
extra_styles=None,
|
133 |
+
style_weights=None,
|
134 |
+
bars: int = 8,
|
135 |
+
beats_per_bar: int = 4,
|
136 |
+
loop_weight: float = 1.0, # NEW
|
137 |
+
loudness_mode: str = "auto", # "auto"|"lufs"|"rms"|"none"
|
138 |
+
loudness_headroom_db: float = 1.0, # for the peak guard
|
139 |
+
):
|
140 |
+
# Load loop & encode
|
141 |
+
loop = au.Waveform.from_file(input_wav_path).resample(mrt.sample_rate).as_stereo()
|
142 |
+
tokens_full = mrt.codec.encode(loop).astype(np.int32)
|
143 |
+
tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
|
144 |
+
|
145 |
+
# Context
|
146 |
+
context_tokens = make_bar_aligned_context(
|
147 |
+
tokens,
|
148 |
+
bpm=bpm,
|
149 |
+
fps=int(mrt.codec.frame_rate),
|
150 |
+
ctx_frames=mrt.config.context_length_frames,
|
151 |
+
beats_per_bar=beats_per_bar,
|
152 |
+
)
|
153 |
+
state = mrt.init_state()
|
154 |
+
state.context_tokens = context_tokens
|
155 |
+
|
156 |
+
# ---------- STYLE: weighted avg into ONE vector ----------
|
157 |
+
# Base embed from loop with adjustable loop_weight
|
158 |
+
embeds = []
|
159 |
+
weights = []
|
160 |
+
|
161 |
+
# loop embedding
|
162 |
+
loop_embed = mrt.embed_style(loop)
|
163 |
+
embeds.append(loop_embed)
|
164 |
+
weights.append(float(loop_weight)) # <--- use requested loop weight
|
165 |
+
|
166 |
+
# extra styles
|
167 |
+
if extra_styles:
|
168 |
+
for i, s in enumerate(extra_styles):
|
169 |
+
if s.strip():
|
170 |
+
embeds.append(mrt.embed_style(s.strip()))
|
171 |
+
w = style_weights[i] if (style_weights and i < len(style_weights)) else 1.0
|
172 |
+
weights.append(float(w))
|
173 |
+
|
174 |
+
# Prevent all-zero weights; normalize
|
175 |
+
wsum = float(sum(weights))
|
176 |
+
if wsum <= 0.0:
|
177 |
+
# fallback: rely on loop to avoid NaNs
|
178 |
+
weights = [1.0] + [0.0] * (len(weights) - 1)
|
179 |
+
wsum = 1.0
|
180 |
+
|
181 |
+
weights = [w / wsum for w in weights]
|
182 |
+
|
183 |
+
# weighted sum -> single style vector (match dtype)
|
184 |
+
combined_style = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(loop_embed.dtype)
|
185 |
+
|
186 |
+
# Chunks to cover exact bars
|
187 |
+
seconds_per_bar = beats_per_bar * (60.0 / bpm)
|
188 |
+
total_secs = bars * seconds_per_bar
|
189 |
+
chunk_secs = mrt.config.chunk_length_frames * mrt.config.frame_length_samples / mrt.sample_rate # ~2.0
|
190 |
+
steps = int(math.ceil(total_secs / chunk_secs)) + 1 # pad then trim
|
191 |
+
|
192 |
+
# Generate
|
193 |
+
chunks = []
|
194 |
+
for _ in range(steps):
|
195 |
+
wav, state = mrt.generate_chunk(state=state, style=combined_style) # ONE style vector
|
196 |
+
chunks.append(wav)
|
197 |
+
|
198 |
+
# Stitch -> trim -> polish
|
199 |
+
out = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
|
200 |
+
out = hard_trim_seconds(out, total_secs).peak_normalize(0.95)
|
201 |
+
apply_micro_fades(out, 5)
|
202 |
+
# Loudness match to the *input loop* so the return level feels consistent
|
203 |
+
out, loud_stats = match_loudness_to_reference(
|
204 |
+
ref=loop, target=out,
|
205 |
+
method=loudness_mode,
|
206 |
+
headroom_db=loudness_headroom_db,
|
207 |
+
)
|
208 |
+
return out, loud_stats
|
209 |
+
|
210 |
+
# ----------------------------
|
211 |
+
# FastAPI app with lazy, thread-safe model init
|
212 |
+
# ----------------------------
|
213 |
+
app = FastAPI()
|
214 |
+
|
215 |
+
app.add_middleware(
|
216 |
+
CORSMiddleware,
|
217 |
+
allow_origins=["*"], # or lock to your domain(s)
|
218 |
+
allow_credentials=True,
|
219 |
+
allow_methods=["*"],
|
220 |
+
allow_headers=["*"],
|
221 |
+
)
|
222 |
+
|
223 |
+
_MRT = None
|
224 |
+
_MRT_LOCK = threading.Lock()
|
225 |
+
|
226 |
+
def get_mrt():
|
227 |
+
global _MRT
|
228 |
+
if _MRT is None:
|
229 |
+
with _MRT_LOCK:
|
230 |
+
if _MRT is None:
|
231 |
+
_MRT = system.MagentaRT(tag="base", guidance_weight=1.0, device="gpu", lazy=False)
|
232 |
+
return _MRT
|
233 |
+
|
234 |
+
@app.post("/generate")
|
235 |
+
def generate(
|
236 |
+
loop_audio: UploadFile = File(...),
|
237 |
+
bpm: float = Form(...),
|
238 |
+
bars: int = Form(8),
|
239 |
+
beats_per_bar: int = Form(4),
|
240 |
+
styles: str = Form("acid house"),
|
241 |
+
style_weights: str = Form(""),
|
242 |
+
loop_weight: float = Form(1.0), # NEW
|
243 |
+
loudness_mode: str = Form("auto"), # NEW
|
244 |
+
loudness_headroom_db: float = Form(1.0), # NEW
|
245 |
+
):
|
246 |
+
# Read file
|
247 |
+
data = loop_audio.file.read()
|
248 |
+
if not data:
|
249 |
+
return {"error": "Empty file"}
|
250 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
|
251 |
+
tmp.write(data)
|
252 |
+
tmp_path = tmp.name
|
253 |
+
|
254 |
+
# Parse styles + weights
|
255 |
+
extra_styles = [s for s in (styles.split(",") if styles else []) if s.strip()]
|
256 |
+
weights = [float(x) for x in style_weights.split(",")] if style_weights else None
|
257 |
+
|
258 |
+
mrt = get_mrt() # warm once, in this worker thread
|
259 |
+
mrt = get_mrt()
|
260 |
+
wav, loud_stats = generate_loop_continuation_with_mrt(
|
261 |
+
mrt,
|
262 |
+
input_wav_path=tmp_path,
|
263 |
+
bpm=bpm,
|
264 |
+
extra_styles=extra_styles,
|
265 |
+
style_weights=weights,
|
266 |
+
bars=bars,
|
267 |
+
beats_per_bar=beats_per_bar,
|
268 |
+
loop_weight=loop_weight,
|
269 |
+
loudness_mode=loudness_mode,
|
270 |
+
loudness_headroom_db=loudness_headroom_db,
|
271 |
+
)
|
272 |
+
|
273 |
+
# Return base64 WAV + minimal metadata
|
274 |
+
buf = io.BytesIO()
|
275 |
+
# add format="WAV" when writing to a file-like object
|
276 |
+
wav.write(buf, subtype="FLOAT", format="WAV")
|
277 |
+
buf.seek(0)
|
278 |
+
audio_b64 = base64.b64encode(buf.read()).decode("utf-8")
|
279 |
+
|
280 |
+
return {
|
281 |
+
"audio_base64": audio_b64,
|
282 |
+
"metadata": {
|
283 |
+
"bpm": int(round(bpm)),
|
284 |
+
"bars": int(bars),
|
285 |
+
"beats_per_bar": int(beats_per_bar),
|
286 |
+
"styles": extra_styles,
|
287 |
+
"style_weights": weights,
|
288 |
+
"loop_weight": loop_weight,
|
289 |
+
"loudness": loud_stats, # NEW
|
290 |
+
"sample_rate": mrt.sample_rate,
|
291 |
+
"channels": mrt.num_channels,
|
292 |
+
"crossfade_seconds": mrt.config.crossfade_length,
|
293 |
+
},
|
294 |
+
}
|
295 |
+
|
296 |
+
@app.get("/health")
|
297 |
+
def health():
|
298 |
+
return {"ok": True}
|