File size: 9,038 Bytes
ba5136e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from flask import Flask, request, jsonify, render_template, Response
import os
import requests
import json
from scipy import spatial
from flask_cors import CORS
import random
import numpy as np
from langchain_chroma import Chroma
from chromadb import Documents, EmbeddingFunction, Embeddings


app = Flask(__name__)
CORS(app)


class MyEmbeddingFunction(EmbeddingFunction):

    def embed_documents(self, input: Documents) -> Embeddings:
        for i in range(5):
            try:
                embeddings = []
                url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5"

                payload = json.dumps({
                    "inputs": input
                })
                headers = {
                    'Accept': 'application/json, text/plain, */*',
                    'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
                    'Connection': 'keep-alive',
                    'Content-Type': 'application/json',
                    'Origin': 'https://deepinfra.com',
                    'Referer': 'https://deepinfra.com/',
                    'Sec-Fetch-Dest': 'empty',
                    'Sec-Fetch-Mode': 'cors',
                    'Sec-Fetch-Site': 'same-site',
                    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
                    'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
                    'sec-ch-ua-mobile': '?0',
                    'sec-ch-ua-platform': '"Windows"'
                }

                response = requests.request("POST", url, headers=headers, data=payload)
                return response.json()["embeddings"]
            except:
                pass

    def embed_query(self, input: Documents) -> Embeddings:
        print(input)
        for i in range(5):
            try:
                embeddings = []
                url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5"

                payload = json.dumps({
                    "inputs": [input]
                })
                headers = {
                    'Accept': 'application/json, text/plain, */*',
                    'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
                    'Connection': 'keep-alive',
                    'Content-Type': 'application/json',
                    'Origin': 'https://deepinfra.com',
                    'Referer': 'https://deepinfra.com/',
                    'Sec-Fetch-Dest': 'empty',
                    'Sec-Fetch-Mode': 'cors',
                    'Sec-Fetch-Site': 'same-site',
                    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
                    'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
                    'sec-ch-ua-mobile': '?0',
                    'sec-ch-ua-platform': '"Windows"'
                }

                response = requests.request("POST", url, headers=headers, data=payload)
                return response.json()["embeddings"][0]
            except:
                pass

CHROMA_PATH = "chroma"
custom_embeddings = MyEmbeddingFunction()
db = Chroma(
    persist_directory=CHROMA_PATH, embedding_function=custom_embeddings
)


def embeddingGen(query):
    url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5"

    payload = json.dumps({
        "inputs": [query]
    })
    headers = {
        'Accept': 'application/json, text/plain, */*',
        'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
        'Connection': 'keep-alive',
        'Content-Type': 'application/json',
        'Origin': 'https://deepinfra.com',
        'Referer': 'https://deepinfra.com/',
        'Sec-Fetch-Dest': 'empty',
        'Sec-Fetch-Mode': 'cors',
        'Sec-Fetch-Site': 'same-site',
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
        'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
        'sec-ch-ua-mobile': '?0',
        'sec-ch-ua-platform': '"Windows"'
    }

    response = requests.request("POST", url, headers=headers, data=payload)
    return response.json()


def strings_ranked_by_relatedness(query, df, top_n=5):
    def relatedness_fn(x, y):
        x_norm = np.linalg.norm(x)
        y_norm = np.linalg.norm(y)
        return np.dot(x, y) / (x_norm * y_norm)

    query_embedding_response = embeddingGen(query)
    query_embedding = query_embedding_response["embeddings"][0]
    strings_and_relatednesses = [
        (row["text"], relatedness_fn(query_embedding, row["embedding"])) for row in df
    ]
    strings_and_relatednesses.sort(key=lambda x: x[1], reverse=True)
    strings, relatednesses = zip(*strings_and_relatednesses)
    return strings[:top_n], relatednesses[:top_n]


@app.route("/api/gpt", methods=["POST"])
def gptRes():
    data = request.get_json()
    messages = data["messages"]
    def inference():
        url = "https://api.deepinfra.com/v1/openai/chat/completions"

        payload = json.dumps({
            "model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
            "messages": messages,
            "stream": True,
            "max_tokens": 1024,
        })
        headers = {
            'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
            'Connection': 'keep-alive',
            'Content-Type': 'application/json',
            'Origin': 'https://deepinfra.com',
            'Referer': 'https://deepinfra.com/',
            'Sec-Fetch-Dest': 'empty',
            'Sec-Fetch-Mode': 'cors',
            'Sec-Fetch-Site': 'same-site',
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
            'X-Deepinfra-Source': 'web-page',
            'accept': 'text/event-stream',
            'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Windows"'
        }

        response = requests.request("POST", url, headers=headers, data=payload, stream=True)

        for line in response.iter_lines(decode_unicode=True):
            if line:
                # try:
                #     line = line.split("data:")[1]
                #     line = json.loads(line)
                #     yield line["choices"][0]["delta"]["content"]
                # except:
                #     yield ""
                yield line

    return Response(inference(), content_type='text/event-stream')


@app.route("/", methods=["GET"])
def index():
    return render_template("index.html")


@app.route("/api/getAPI", methods=["POST"])
def getAPI():
    return jsonify({"API":  random.choice(apiKeys)})


@app.route("/api/getContext", methods=["POST"])
def getContext():
    global db
    question = request.form["question"]
    results = db.similarity_search_with_score(question, k=5)
    context = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
    sources = [doc.metadata.get("id", None) for doc, _score in results]
    return jsonify({"context": context, "sources": sources})


@app.route("/api/audioGenerate", methods=["POST"])
def audioGenerate():
    answer = request.form["answer"]
    audio = []
    for i in answer.split("\n"):
        url = "https://deepgram.com/api/ttsAudioGeneration"

        payload = json.dumps({
            "text": i,
            "model": "aura-asteria-en",
            "demoType": "landing-page",
            "params": "tag=landingpage-product-texttospeech"
        })
        headers = {
            'accept': '*/*',
            'accept-language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
            'content-type': 'application/json',
            'origin': 'https://deepgram.com',
            'priority': 'u=1, i',
            'referer': 'https://deepgram.com/',
            'sec-ch-ua': '"Not/A)Brand";v="8", "Chromium";v="126", "Google Chrome";v="126"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Windows"',
            'sec-fetch-dest': 'empty',
            'sec-fetch-mode': 'cors',
            'sec-fetch-site': 'same-origin',
            'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36'
        }

        response = requests.request("POST", url, headers=headers, data=payload)
        audio.append(response.json()["data"])
    return jsonify({"audio": audio})


if __name__ == "__main__":
    # app.run(debug=True)
    from waitress import serve

    serve(app, host="0.0.0.0", port=7860)