Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,59 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
7 |
|
8 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def generate_response(user_input, chat_history=None):
|
10 |
if chat_history is None:
|
11 |
chat_history = []
|
12 |
|
13 |
-
#
|
14 |
-
input_text =
|
15 |
-
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
chat_history.append(user_input)
|
23 |
-
chat_history.append(response)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
return response, chat_history
|
26 |
|
27 |
-
#
|
28 |
def respond(user_input, chat_history=None):
|
29 |
response, chat_history = generate_response(user_input, chat_history)
|
30 |
return response, chat_history
|
31 |
|
32 |
-
#
|
33 |
-
iface = gr.Interface(
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
+
# Load model and tokenizer
|
5 |
+
model_name = "meta-llama/Llama-2-7b-hf"
|
|
|
6 |
|
7 |
+
# Use Hugging Face authentication token
|
8 |
+
token = 'HUGGINGFACE_TOKEN' # Replace this with your Hugging Face token
|
9 |
+
|
10 |
+
# Load model and tokenizer from Hugging Face
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=token)
|
13 |
+
|
14 |
+
# Function to generate response from the model
|
15 |
def generate_response(user_input, chat_history=None):
|
16 |
if chat_history is None:
|
17 |
chat_history = []
|
18 |
|
19 |
+
# Format the input for the model
|
20 |
+
input_text = user_input + ' ' # Add a space for separation between user input and the response
|
|
|
21 |
|
22 |
+
# Encode the input
|
23 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
24 |
|
25 |
+
# Generate a response from the model
|
26 |
+
outputs = model.generate(inputs, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, pad_token_id=tokenizer.eos_token_id)
|
|
|
|
|
27 |
|
28 |
+
# Decode the response
|
29 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
+
|
31 |
+
# Append the response to the chat history
|
32 |
+
chat_history.append((user_input, response))
|
33 |
+
|
34 |
+
# Return the response and updated chat history
|
35 |
return response, chat_history
|
36 |
|
37 |
+
# Gradio Interface
|
38 |
def respond(user_input, chat_history=None):
|
39 |
response, chat_history = generate_response(user_input, chat_history)
|
40 |
return response, chat_history
|
41 |
|
42 |
+
# Set up Gradio interface
|
43 |
+
iface = gr.Interface(
|
44 |
+
fn=respond,
|
45 |
+
inputs=[
|
46 |
+
gr.Textbox(label="Your Message", placeholder="Ask me anything!", lines=2),
|
47 |
+
gr.State()
|
48 |
+
],
|
49 |
+
outputs=[
|
50 |
+
gr.Textbox(label="Response", lines=3),
|
51 |
+
gr.State()
|
52 |
+
],
|
53 |
+
title="Llama-2 Chatbot",
|
54 |
+
description="Ask me anything, and I'll respond using Llama-2 model.",
|
55 |
+
live=True
|
56 |
+
)
|
57 |
+
|
58 |
+
# Launch the Gradio interface
|
59 |
iface.launch()
|