Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
9 |
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
|
11 |
# Function to generate responses
|
12 |
def generate_response(user_input, chat_history):
|
13 |
-
# Add the user's input to the conversation history
|
14 |
chat_history.append({"role": "user", "content": user_input})
|
15 |
-
|
16 |
-
# Prepare input for the model
|
17 |
conversation = ""
|
18 |
for turn in chat_history:
|
19 |
conversation += f"{turn['role']}: {turn['content']}\n"
|
20 |
inputs = tokenizer(conversation, return_tensors="pt").to(model.device)
|
21 |
-
|
22 |
-
# Generate model response
|
23 |
outputs = model.generate(inputs.input_ids, max_length=500, do_sample=True, temperature=0.7)
|
24 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
-
|
26 |
-
# Add the model's response to the chat history
|
27 |
chat_history.append({"role": "assistant", "content": response})
|
28 |
-
|
29 |
-
# Only return the model's response for display
|
30 |
return response, chat_history
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
with gr.Blocks() as chat_interface:
|
37 |
-
gr.Markdown("## LLaMA-2 Chatbot")
|
38 |
-
chat_input = gr.Textbox(label="Your Message")
|
39 |
-
chat_output = gr.Chatbot()
|
40 |
-
|
41 |
-
# Update chat on button click
|
42 |
-
def handle_input(user_input):
|
43 |
response, chat_history = generate_response(user_input, chat_history)
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
chat_input.submit(handle_input, inputs=chat_input, outputs=[chat_input, chat_output])
|
48 |
-
|
49 |
-
# Launch Gradio app
|
50 |
-
chat_interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Load model and tokenizer with the token from environment variables
|
7 |
+
model_name = "meta-llama/Llama-2-7b-hf"
|
8 |
+
token = os.getenv("HUGGINGFACE_TOKEN") # Get token from environment
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=token, torch_dtype=torch.float16)
|
11 |
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
# Function to generate responses
|
14 |
def generate_response(user_input, chat_history):
|
|
|
15 |
chat_history.append({"role": "user", "content": user_input})
|
|
|
|
|
16 |
conversation = ""
|
17 |
for turn in chat_history:
|
18 |
conversation += f"{turn['role']}: {turn['content']}\n"
|
19 |
inputs = tokenizer(conversation, return_tensors="pt").to(model.device)
|
|
|
|
|
20 |
outputs = model.generate(inputs.input_ids, max_length=500, do_sample=True, temperature=0.7)
|
21 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
22 |
chat_history.append({"role": "assistant", "content": response})
|
|
|
|
|
23 |
return response, chat_history
|
24 |
|
25 |
+
# Define Gradio chat interface
|
26 |
+
def chat_interface():
|
27 |
+
chat_history = []
|
28 |
+
def respond(user_input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
response, chat_history = generate_response(user_input, chat_history)
|
30 |
+
return response
|
31 |
+
gr.Interface(fn=respond, inputs="text", outputs="text", title="LLaMA-2 Chatbot").launch()
|
|
|
|
|
|
|
|
|
|