Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| # Copyright 2004-present Facebook. All Rights Reserved. | |
| import numpy as np | |
| from typing import List | |
| from detectron2.config import CfgNode as CfgNode_ | |
| from detectron2.config import configurable | |
| from detectron2.structures import Instances | |
| from detectron2.structures.boxes import pairwise_iou | |
| from detectron2.tracking.utils import LARGE_COST_VALUE, create_prediction_pairs | |
| from .base_tracker import TRACKER_HEADS_REGISTRY | |
| from .hungarian_tracker import BaseHungarianTracker | |
| class VanillaHungarianBBoxIOUTracker(BaseHungarianTracker): | |
| """ | |
| Hungarian algo based tracker using bbox iou as metric | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| video_height: int, | |
| video_width: int, | |
| max_num_instances: int = 200, | |
| max_lost_frame_count: int = 0, | |
| min_box_rel_dim: float = 0.02, | |
| min_instance_period: int = 1, | |
| track_iou_threshold: float = 0.5, | |
| **kwargs, | |
| ): | |
| """ | |
| Args: | |
| video_height: height the video frame | |
| video_width: width of the video frame | |
| max_num_instances: maximum number of id allowed to be tracked | |
| max_lost_frame_count: maximum number of frame an id can lost tracking | |
| exceed this number, an id is considered as lost | |
| forever | |
| min_box_rel_dim: a percentage, smaller than this dimension, a bbox is | |
| removed from tracking | |
| min_instance_period: an instance will be shown after this number of period | |
| since its first showing up in the video | |
| track_iou_threshold: iou threshold, below this number a bbox pair is removed | |
| from tracking | |
| """ | |
| super().__init__( | |
| video_height=video_height, | |
| video_width=video_width, | |
| max_num_instances=max_num_instances, | |
| max_lost_frame_count=max_lost_frame_count, | |
| min_box_rel_dim=min_box_rel_dim, | |
| min_instance_period=min_instance_period, | |
| ) | |
| self._track_iou_threshold = track_iou_threshold | |
| def from_config(cls, cfg: CfgNode_): | |
| """ | |
| Old style initialization using CfgNode | |
| Args: | |
| cfg: D2 CfgNode, config file | |
| Return: | |
| dictionary storing arguments for __init__ method | |
| """ | |
| assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS | |
| assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS | |
| video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") | |
| video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") | |
| max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) | |
| max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) | |
| min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) | |
| min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) | |
| track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) | |
| return { | |
| "_target_": "detectron2.tracking.vanilla_hungarian_bbox_iou_tracker.VanillaHungarianBBoxIOUTracker", # noqa | |
| "video_height": video_height, | |
| "video_width": video_width, | |
| "max_num_instances": max_num_instances, | |
| "max_lost_frame_count": max_lost_frame_count, | |
| "min_box_rel_dim": min_box_rel_dim, | |
| "min_instance_period": min_instance_period, | |
| "track_iou_threshold": track_iou_threshold, | |
| } | |
| def build_cost_matrix(self, instances: Instances, prev_instances: Instances) -> np.ndarray: | |
| """ | |
| Build the cost matrix for assignment problem | |
| (https://en.wikipedia.org/wiki/Assignment_problem) | |
| Args: | |
| instances: D2 Instances, for current frame predictions | |
| prev_instances: D2 Instances, for previous frame predictions | |
| Return: | |
| the cost matrix in numpy array | |
| """ | |
| assert instances is not None and prev_instances is not None | |
| # calculate IoU of all bbox pairs | |
| iou_all = pairwise_iou( | |
| boxes1=instances.pred_boxes, | |
| boxes2=self._prev_instances.pred_boxes, | |
| ) | |
| bbox_pairs = create_prediction_pairs( | |
| instances, self._prev_instances, iou_all, threshold=self._track_iou_threshold | |
| ) | |
| # assign large cost value to make sure pair below IoU threshold won't be matched | |
| cost_matrix = np.full((len(instances), len(prev_instances)), LARGE_COST_VALUE) | |
| return self.assign_cost_matrix_values(cost_matrix, bbox_pairs) | |
| def assign_cost_matrix_values(self, cost_matrix: np.ndarray, bbox_pairs: List) -> np.ndarray: | |
| """ | |
| Based on IoU for each pair of bbox, assign the associated value in cost matrix | |
| Args: | |
| cost_matrix: np.ndarray, initialized 2D array with target dimensions | |
| bbox_pairs: list of bbox pair, in each pair, iou value is stored | |
| Return: | |
| np.ndarray, cost_matrix with assigned values | |
| """ | |
| for pair in bbox_pairs: | |
| # assign -1 for IoU above threshold pairs, algorithms will minimize cost | |
| cost_matrix[pair["idx"]][pair["prev_idx"]] = -1 | |
| return cost_matrix | |