File size: 5,336 Bytes
5b303e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
#=======================================
#========= UNet Architecture ===========
#=======================================
class UNet(nn.Module):
def __init__(self, in_channels=3, num_classes=2):
super(UNet, self).__init__()
def conv_block(in_c, out_c):
return nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
nn.BatchNorm2d(out_c),
nn.ReLU(inplace=True),
nn.Conv2d(out_c, out_c, kernel_size=3, padding=1),
nn.BatchNorm2d(out_c),
nn.ReLU(inplace=True)
)
self.encoder1 = conv_block(in_channels, 64)
self.pool1 = nn.MaxPool2d(2)
self.encoder2 = conv_block(64, 128)
self.pool2 = nn.MaxPool2d(2)
self.encoder3 = conv_block(128, 256)
self.pool3 = nn.MaxPool2d(2)
self.bottleneck = conv_block(256, 512)
self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.decoder3 = conv_block(512, 256)
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.decoder2 = conv_block(256, 128)
self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.decoder1 = conv_block(128, 64)
self.final = nn.Conv2d(64, num_classes, kernel_size=1)
def forward(self, x):
enc1 = self.encoder1(x)
enc2 = self.encoder2(self.pool1(enc1))
enc3 = self.encoder3(self.pool2(enc2))
bottleneck = self.bottleneck(self.pool3(enc3))
dec3 = self.upconv3(bottleneck)
dec3 = torch.cat((dec3, enc3), dim=1)
dec3 = self.decoder3(dec3)
dec2 = self.upconv2(dec3)
dec2 = torch.cat((dec2, enc2), dim=1)
dec2 = self.decoder2(dec2)
dec1 = self.upconv1(dec2)
dec1 = torch.cat((dec1, enc1), dim=1)
dec1 = self.decoder1(dec1)
return self.final(dec1)
#=======================================
#======= Inception Architecture ========
#=======================================
class InceptionBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(InceptionBlock, self).__init__()
self.b1 = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.ReLU(inplace=True))
self.b2 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.b3 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.Conv2d(out_channels, out_channels, kernel_size=5, padding=2),
nn.ReLU(inplace=True)
)
self.b4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.ReLU(inplace=True)
)
def forward(self, x):
b1 = self.b1(x)
b2 = self.b2(x)
b3 = self.b3(x)
b4 = self.b4(x)
return torch.cat([b1, b2, b3, b4], dim=1)
class Inception(nn.Module):
def __init__(self, in_channels=3, num_classes=2):
super(Inception, self).__init__()
self.weights_init()
self.inception1 = InceptionBlock(in_channels, 64)
self.inception2 = InceptionBlock(256, 128)
self.inception3 = InceptionBlock(512, 256)
self.conv1x1 = nn.Conv2d(1024, num_classes, kernel_size=1)
self.upsample = nn.Upsample(scale_factor=8, mode='bilinear', align_corners=True)
def weights_init(self):
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
def forward(self, x):
height, width = x.shape[2], x.shape[3]
x = self.inception1(x)
x = self.inception2(x)
x = self.inception3(x)
x = self.conv1x1(x)
x = F.interpolate(x, size=(height, width), mode='bilinear', align_corners=True)
return x
#=======================================
#======= Swin Transformer ==============
#=======================================
class Segformer(nn.Module):
def __init__(self, model_name='nvidia/segformer-b0-finetuned-ade-512-512', num_classes=2):
super(Segformer, self).__init__()
self.model = SegformerForSemanticSegmentation.from_pretrained(
model_name,
num_labels=num_classes,
ignore_mismatched_sizes=True
)
self.processor = SegformerImageProcessor.from_pretrained(model_name)
self.normalizer = T.Normalize(mean=self.processor.image_mean, std=self.processor.image_std)
def forward(self, x):
x = self.normalizer(x)
logits = self.model(pixel_values=x).logits # Shape: [B, C, H', W']
logits = F.interpolate(logits, size=(x.shape[2], x.shape[3]), mode='bilinear', align_corners=True)
return logits |