Spaces:
Runtime error
Runtime error
Commit
·
2a11a7e
1
Parent(s):
068cd45
Update app.py & requirements
Browse files- app.py +60 -21
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,29 +1,68 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
from
|
4 |
|
5 |
-
|
6 |
-
api = HfApi()
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
models = api.list_models(filter=ModelFilter(task="text-classification"))[:10]
|
13 |
-
model_ids = [model.modelId for model in models]
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
select_model = form.selectbox("Select a pretrained model", model_ids)
|
18 |
-
input = form.text_area('Enter your text here.')
|
19 |
-
submit = form.form_submit_button("Submit")
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
|
4 |
|
5 |
+
decision_to_str = {'REJECTED': 0, 'ACCEPTED': 1, 'PENDING': 2, 'CONT-REJECTED': 3, 'CONT-ACCEPTED': 4, 'CONT-PENDING': 5}
|
|
|
6 |
|
7 |
+
dataset_dict = load_dataset('HUPD/hupd',
|
8 |
+
name='all',
|
9 |
+
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
|
10 |
+
icpr_label=None,
|
11 |
+
force_extract=True,
|
12 |
+
train_filing_start_date='2016-01-01',
|
13 |
+
train_filing_end_date='2016-01-01',
|
14 |
+
val_filing_start_date='2017-01-01',
|
15 |
+
val_filing_end_date='2017-05-31',
|
16 |
+
)
|
17 |
|
18 |
+
dataset = dataset_dict['validation'].filter(lambda e: e['decision'] in ['REJECTED', 'ACCEPTED'])
|
|
|
|
|
19 |
|
20 |
+
model_abstract = DistilBertForSequenceClassification('theresatvan/hupd-distilbert-abstract')
|
21 |
+
tokenizer_abstract = DistilBertTokenizer('theresatvan/hupd-distilbert-abstract')
|
|
|
|
|
|
|
22 |
|
23 |
+
model_claims = DistilBertForSequenceClassification('theresatvan/hupd-distilbert-claims')
|
24 |
+
tokenizer_claims = DistilBertTokenizer('theresatvan/hupd-distilbert-claims')
|
25 |
+
|
26 |
+
|
27 |
+
def predict(model_abstract, model_claims, tokenizer_abstract, tokenizer_claims, input):
|
28 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
29 |
+
|
30 |
+
model_abstract.to(device)
|
31 |
+
model_claims.to(device)
|
32 |
+
|
33 |
+
model_abstract.eval()
|
34 |
+
model_claims.eval()
|
35 |
+
|
36 |
+
abstract, claims = input['abstract'], input['claims']
|
37 |
+
|
38 |
+
input_abstract = tokenizer_abstract(abstract, return_tensors='pt')
|
39 |
+
input_claims = tokenizer_claims(claims, return_tensors='pt')
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs_abstract = model_abstract(**input_abstract)
|
43 |
+
outputs_claims = model_claims(**input_claims)
|
44 |
+
|
45 |
+
combined_prob = (outputs_abstract.logits.softmax(dim=1) + outputs_claims.logits.softmax(dim=1)) / 2
|
46 |
+
label = torch.argmax(combined_prob, dim=1)
|
47 |
+
|
48 |
+
return label, combined_prob
|
49 |
+
|
50 |
+
|
51 |
+
if __name__ == '__main__':
|
52 |
+
st.title = "Can I Patent This?"
|
53 |
+
|
54 |
+
form = st.form('patent-prediction-form')
|
55 |
+
dropdown = []
|
56 |
|
57 |
+
input_application = form.selectbox('Select a patent\'s application number', patents_dropdown)
|
58 |
+
submit = form.form_submit_button("Submit")
|
59 |
|
60 |
+
if submit:
|
61 |
+
input = dataset.filter(lambda e: e['application_number'] == input_application)
|
62 |
+
|
63 |
+
label, prob = predict(model_abstract, model_claims, tokenizer_abstract, tokenizer_claims, input)
|
64 |
+
|
65 |
+
st.write(label)
|
66 |
+
st.write(predict)
|
67 |
+
st.write(input['decision'])
|
68 |
+
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
streamlit
|
2 |
transformers
|
3 |
-
torch
|
|
|
|
1 |
streamlit
|
2 |
transformers
|
3 |
+
torch
|
4 |
+
datasets
|